Neurocomputing 639 (2025) 130214

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Check for

Explaining Graph Neural Networks with Mixed-Integer Programming uwdaied
Blake B. Gaines *®@, Chunjiang Zhu?, Jinbo Bi 2®*

2 Department of Computer Science, University of Connecticut, Storrs, 06268, CT, USA
b University of North Carolina Greensboro, Greensboro, 27412, NC, USA

ARTICLE INFO ABSTRACT

Communicated by J. Cao Graph Neural Networks (GNNs) provide state-of-the-art graph learning performance, but their lack of trans-
parency hinders our ability to understand and trust them, ultimately limiting the areas where they can be
applied. Many methods exist to explain individual predictions made by GNNs, but there are fewer ways to
gain more general insight into the patterns they have been trained to identify. Most existing methods for
model-level GNN explanations attempt to generate graphs that exemplify these patterns, but the discreteness
of graphs and the nonlinearity of deep GNNs make finding such graphs difficult. In this paper, we formulate the
search for an explanatory graph as a mixed-integer programming (MIP) problem, in which decision variables
specify the explanation graph and the objective function represents the quality of the graph as an explanation
for a GNN’s predictions of an entire class in the dataset. This approach, which we call MIPExplainer, allows us
to directly optimize over the discrete input space and find globally optimal solutions with a minimal number
of hyperparameters. MIPExplainer outperforms existing methods in finding accurate and stable explanations
on both synthetic and real-world datasets. Code is available at https://github.com/blake-gaines/MIPExplainer.

Dataset link: https://github.com/blake-gaines/
MIPExplainer

1. Introduction

Graph neural networks (GNNs), such as graph convolutional net-
works (GCN) [1], GraphSAGE networks [2], and graph attention net-
works (GAT) [3], provide a family of powerful tools for modeling
graphs that learn from both the features contained in nodes and edges
and the structure of the graph itself. However, the limited explainability
of GNN prediction makes it impossible to justify the use of GNNs in
applications where trust and safety are important, and there is no
way to extract useful information from them. These problems have
motivated a significant amount of research into techniques for GNN
explainability.

Research on explainable deep learning proceeds along two lines.
One line is to develop intrinsically explainable methods, which mod-
ify standard neural networks or the training process so that final
models naturally expose information about the importance and inter-
action of input features. Several proposed GNN architectures aim to
achieve inherent explainability, such as ProtGNN [4], GIB [5], and
GraphChef [6]. The disadvantage of this approach is that changing
the GNN itself to enforce explainability restricts users’ choice of GNN
architectures and does not allow for the explanation of already-trained
GNNS . As a result, there is great interest in the second line of research,
post-hoc explainability, which aims to interpret networks that have
already been trained. Post-hoc instance-level explanation, which aims

* Corresponding author.
E-mail address: jinbo.bi@uconn.edu (J. Bi).

https://doi.org/10.1016/j.neucom.2025.130214

to explain the reasoning behind individual predictions, has been exten-
sively explored for GNNs (see surveys from [7-9]), but fewer methods
exist to explain the overall patterns used by GNNs to differentiate
classes.

1.1. Related work

GNN explanation

At least six categories of instance-level GNN explanations have been
proposed so far, including those based on gradients/features [10,11],
perturbations [12-16], surrogates [17], generation [13,18], decom-
position [19-21], and counterfactuals [20]. These methods do not
immediately provide insights into the overall patterns a GNN has
identified, but it is possible to consolidate instance-level explanations
to reveal model-level patterns. For example, we can employ purely
statistical methods to determine whether there are common subgraphs
shared by a significant portion of the individual explanations. A more
recent technique, GLGExplainer [22], finds smaller components of
the extracted instance explanations that can be used to build logical
expressions consistent with the overall GNN’s predictions. However,
these methods that combine instance-level explanations may be limited
by the scope of the training instances, and can be influenced by bias in
the dataset. Generating explanations directly from the GNN model is

Received 12 July 2024; Received in revised form 10 March 2025; Accepted 5 April 2025

Available online 19 April 2025

0925-2312/© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, Al training, and similar technologies.

B.B. Gaines et al.

more faithful, and provides deeper insights into the degree of bias in
the model itself.

Our proposed method, like many methods for explaining GNNs at
the model level, focuses on generating graphs that reflect the represen-
tative patterns of individual classes differentiated by a GNN classifier.
PAGE [23], GCExplainer [24], MAGE [25], and the method described
in [26] are global explanation methods that focus on explaining GNNs
via concept generation, an approach that only considers graphs and
subgraphs from the training data. For example, PAGE begins by clus-
tering training graphs in each class based on the features extracted
by the message-passing layers of the GNN (i.e. the training graph
embeddings), and then finds common subgraphs within the graphs
comprising each cluster. It then applies the GNN to these subgraphs and
finds the ones that maximize their respective graph’s class probability
as the class-level explanations. The other methods listed above also
follow a similar procedure, searching for subgraphs of the training
graphs using criteria based on their embeddings from the GNN. Among
these methods, we choose to compare with PAGE, because the criteria
it uses to select representative subgraphs is the most comparable to
ours. On the other hand, XGNN [27] is a well-established approach
that explains the model by finding graphs that maximize the model
output for a target class. It serves as the baseline in several recent
papers that focus on similar objectives [22,23,28-30]. XGNN trains a
second neural network by reinforcement learning to generate graphs
that obey explicit, hand-crafted generation rules (e.g. a maximum
node degree) while maximizing the original GNN’s prediction for a
specific class. Similarly, D4Explainer [30] trains a separate denoising
model and generates explanation graphs through a diffusion process.
GNNInterpreter [29], GDM [31], and GraphEx [32] avoid training a
second neural network by assuming that the graphs in the dataset are
sampled from underlying distributions parameterized by continuous
latent parameters. In particular, GNNInterpreter defines an objective
function similar to XGNN during training, maximizing a target class’s
logit while penalizing the distance between the GNN’s embedding of
the generated graph and the mean embedding of the training data
to keep explanations in-distribution, and learns parameters through
Monte Carlo gradient estimation. GraphEx follows a similar strategy to
GNNInterpreter, but attempts to learn the conditional probabilities of
graphs in the dataset given the classes predicted by the model. GDM
minimizes the estimated maximum mean discrepancy between the
distribution of embeddings of training graphs and the distribution of
embeddings of the learned explanations, and also employs regularizers
to keep the explanations in-distribution. KnowGNN [33] also learns the
latent parameters of categorical distributions to extract graph features,
but additionally trains a second neural network that learns to mask
edges as part of generating explanations.

There are several common problems among existing approaches
to model-level GNN explanation. First, they often have many hyper-
parameters (e.g. learning rate, regularizer weights) that can change
the quality of generated explanations, and generating a high-quality
explanation may require setting them within a specific range of val-
ues. Because there is no single metric to quantify global explana-
tion quality, the performance of these methods is mostly evaluated
through visualization and manual inspection of the results. Therefore,
it is impossible to objectively compare the results from different hy-
perparameter settings and determine which explanation to use, and
performing hyperparameter optimization qualitatively is similarly dif-
ficult without prior knowledge of a ground-truth explanation. Second,
all of the methods rely on stochastic gradient descent algorithms to
optimize parameter values used to generate explanations. A stochastic
optimization algorithm converges to a critical point only in expectation,
so in individual runs it may stop anywhere within a large neighborhood
of the desired optima. When a maximum number of iterations is set,
the final explanation’s objective value might be far away from the
globally optimal value. Thus, explanations generated in different runs
with different starting values for the parameters vary significantly,

Neurocomputing 639 (2025) 130214

even with the same choices of hyperparameters. Third, these methods
do not have theoretical guarantees of achieving optimality, or even
bound the gap in optimization objective between their solution and an
optimum. Due to their lack of algorithmic stability and their inability
to guarantee solution quality, existing methods cannot explain a GNN
in a consistent manner across multiple runs. This variability is unde-
sirable, because the distribution of generated explanations is unknown
relative to the global optima for a given interpretation objective. As
a result, it is questionable whether the generated explanations contain
the information that the objective function was designed to extract. We
argue that the degree of consistency among explanations generated in
successive runs of an explanation method is an important measure of
their performance, even though it does not directly measure the quality
of the generated explanation graphs themselves.

Mixed-integer programming for deep neural networks

Mixed-integer programming (MIP) has been used to encode ReLU
networks to solve verification problems [34-36], inverse design prob-
lems [37,38], and to generate instance-level explanations for ReLU
networks [39]. MIP defines a constrained optimization problem where
some of the decision variables must take integer values. MIP problems
are commonly solved through branch-and-bound, where the original
problem is decomposed into subproblems defined on partitions of the
feasible solution set and solved recursively, creating a search tree.
Note that for a maximization problem, removing any constraints and
solving the relaxed problem will yield solutions that bound the original
problem’s optimal solution from above. Thus, an upper bound on
any of the MIP subproblems can be found by relaxing the integrality
constraints and solving the resulting system. Then, large subtrees can
be pruned if the upper bound at the root node of the subtree is less than
the objective value of a known solution, improving the tractability of
the search.

The approach in [40] successfully encodes GCN and GraphSAGE
layers into MIPs, but MIPs encoding larger GNNs often remain in-
tractable to solve, primarily due to the issue of symmetry. GNN layers
are equivariant with respect to the ordering of the nodes in the graph,
and permutation invariant pooling layers are generally used to make
graph-level predictions. As a result, the worst-case number of possi-
ble representations for an optimal graph defined in terms of a node
feature matrix and adjacency matrix grows exponentially with respect
to the number of nodes in the graph. This creates practical problems
when solving a GNN’s MIP using branch-and-bound, as any subtree
containing an equivalent representation of the optimal solution cannot
be pruned. This problem can be addressed by adding constraints to
reduce the number of feasible solutions in the equivalence class of
each graph, as described in [41]. Our proposed approach benefits from
these works by combining existing formulations of GNN layers with
symmetry breaking techniques, creating an explanation method that is
both tractable and stable.

1.2. Main contributions

We propose a new explanation method based on MIP, which we
call MIPExplainer, to find graph structures or subgraphs that explain
GNN models from multiple perspectives. We design three novel objec-
tive functions to respectively discover subgraphs that the GNN model
reports as the most representative of a class (reaching the highest class
probability), the most difficult-to-classify (on the boundary between
two classes), and contrastive class-specific explanations in a range of
scenarios. We further propose a new quantitative metric for explanation
methods to assess their stability by measuring the dissimilarity of the
generated explanations across multiple runs. While any appropriate
metric can be used to measure the (dis)similarity of these graphs [42],
we employ graph edit distance [43], which is commonly used in inexact
graph matching. MIPExplainer offers several benefits over existing
approaches:

B.B. Gaines et al.

1. It directly optimizes over the discrete space of possible input
graphs, without any restrictions on types of node and edge
features. The only assumptions we make about the space of
graphs are bounds on the number of nodes and the magnitude
of node features, and we do not require any assumptions about
the underlying distribution of the training data.

2. It has a minimal number of hyperparameters that influence
the explanation, as only the number of nodes of the expla-
nation graph needs to be specified, and empirically generates
recognizably in-distribution explanations without the need for
additional regularization terms. This facilitates the application
of our approach and mitigates the effects of bias when analyzing
the results.

3. It can verify the optimality of results with respect to the expla-
nation objective. In cases where this is intractable, MIPExplainer
can place an upper bound on the optimal solution, guaranteeing
the quality of the generated explanation.

2. Our approach - MIPExplainer

Our model-level explanation seeks to optimize an input graph G =
(X, A) with respect to some explanation objective defined in terms of
the GNN’s output, where X contains the d attributes for each of N
graph nodes as row vectors and A = (q;;) represents the N by N
adjacency matrix. Like XGNN, which searches for a graph to maximize
the predicted probability of a certain class, and GNNInterpreter, which
maximizes the logit of a certain class, we generate unweighted graphs
where A is binary adjacency matrix (a;; € {0,1}), so that a;; = 1
indicates there is an edge between nodes i and j, and X is the node
feature matrix where x;; represents feature j of node i. Let a GNN
realize a function f.(G,6) that maps G to the (possibly unnormalized)
probabilities of several classes indexed by ¢, where 6 contains all
trainable parameters in the GNN. To train a GNN, a set of graphs
is given and 0 needs to be determined, whereas in the explanation
setting, 6 has been fixed and we optimize G = (X, A) in terms of an
explainability objective, for example to maximize f.(G,0).

To formulate the MIP, we examine the calculation performed by a
multi-layer GNN. Each layer of the GNN imposes a set of constraints on
X and A in the MIP. Consider how node features are updated in the first
GNN layer of a GraphSAGE model. Using the features of node i in G,
represented by the row vector x;, and its neighbors, represented by A;
or the ith row of A, the node’s updated representation x; is computed
as x| = ¢p(x;W; + A, XW, + b) where W, W,, and b are part of the
fixed parameters in 0, and ¢ is an activation function. The nonzero
a;; in A; indicates that node j is a neighbor of node i, so the term
A; X aggregates the features of all of node i’s neighbors. By adding new
decision variables X’ = (xlf), this equation forms a constraint on X and
A. The second GNN layer is then encoded in exactly the same way as
the first, but now to constrain X’. This constraining process propagates
all the way to the final layer that calculates f,(G,#0), at which point
the decision variables representing the final output can be used to
directly express an explainability-related objective function. All of the
constraints formed at each layer eventually back-propagate to constrain
X and A. Additional constraints on nodes and edges can be included to
ensure that a connected graph is generated. In the subsequent sections,
we provide a full description of our MIP formulation including the
design of objective functions and the formation of constraints that
encode the GNN.

Through a sequence of algebraic operations, we ensure our MIP
encodings of GNNs have both linear objective functions and linear
constraints in terms of the decision variables, so our MIP is actually
a Mixed-Integer Linear Program (MILP). Linearity greatly reduces the
complexity of the optimization, and well-studied methods exist to solve
continuous relaxations of the MILP problem and establish upper bounds
on solution quality with time complexity that is polynomial in terms of
the number of decision variables and constraints [44].

Neurocomputing 639 (2025) 130214

200 y

@
S

Star Logit
=

50 Class
e Star
° Wheel
0
0 50 100 150

Wheel Logit

Fig. 1. Logits of Star and Wheel Graphs in the Shapes Dataset.

2.1. Objective functions

Existing model-level GNN explanation methods define objectives to
represent the knowledge that a GNN has learned about each class in
the dataset. To find a representative graph for a class label, some of
the existing methods (e.g., GNNInterpreter) do not directly maximize
the class probability (which is computed through the softmax of logits).
Rather they maximize the class logit (while ignoring the logits of other
classes in the denominator of the softmax). However, we argue that
maximizing a single logit may lead to wrong explanations. For instance,
after training a GNN to differentiate between two classes of graphs
(stars and wheels, a task defined in [29], see Section 4 for details),
each graph receives two logits, one for each class, and the graphs are
classified to the class of the larger logit. We plot the two logits for
the training graphs in Fig. 1. The points above the diagonal line are
correctly classified as Stars whereas those below the line are Wheels. All
graphs are correctly classified but the maximum logit in the wheel class
is actually attained by a correctly classified star graph (the rightmost
blue point). Thus, simply maximizing the logit for wheels will produce
a representative graph for the star class.

Our objectives are designed to examine the various differences
between logits. Although we focus on discussing how the proposed MIP
finds class-representative graphs for explanations in order to compare
against extant methods, we also demonstrate that MIP can be used to
identify other sorts of explanations for the GNN with appropriately-
designed objective functions. Eq. (Class-Representative Explanation)
encourages class-representative features by maximizing the difference
between the target class and the maximum of the other classes, a
similar objective to other baseline methods. Eq. (Boundary Explana-
tion) is a novel explanation objective, which aims to find features
representative of graphs at the decision boundary between two classes.
Eq. (Paired Explanation) is another novel objective based on instance-
level counterfactual explanations, which jointly optimizes two graphs
to be minimally different with a maximal change in the prediction of a
certain class.

2.1.1. Finding class representatives

To accurately find class-discriminative information, we should max-
imize the difference between the logit of the target class and the logits
of the other classes. Maximizing the normalized probability, as done
by XGNN, is possible but can lead to numerical instability because
improvements get exponentially smaller as the magnitude of the logits
increases. We can form an objective function as a linear combination
of all logits but with a positive coefficient for only the target class.
However, it is possible that an optimal solution simply minimizes one

B.B. Gaines et al.

logit while leaving other logits close to or even greater than the logit
of the target class, resulting in an incorrect explanation. To mitigate
this problem, we maximize the difference between the logit of the
target class and the maximum logit of the other classes. According to
our observations, this approach is more effective, so we propose the
following objective function:

max O(G) = <fC(G, 0) — max(f;(G, 9)))
G i#c
(Class-Representative Explanation)

where f; denotes the ith logit (or the ith output of the GNN before the
application of the softmax function for classification).

2.1.2. Finding boundary explanations

For classification tasks, it can be insightful to illustrate what kind of
graph data the GNN has difficulty to classify, i.e., those graphs that are
located on the separation boundary (i.e., fe,(G.0) = £, (G, 0)) between
two classes ¢y, ¢,. In particular, we identify the one that best represents
a class under the condition of within a small distance d from the
decision boundary between the class and another class. It corresponds
to minimizing the following objective:

0(G) = <fc1(G,9) - max (f(G, 9))) ,
ig¢{cr.cr}

max
1G:1fey (GO, (G.O)|<5) c

(Boundary Explanation)

where ¢, and ¢, can represent any of the classes. The motivation for this
objective function is to isolate features that may be used by the model
to distinguish between the two classes and separate them from the rest.
By maximizing the prediction of the chosen classes while minimizing
the prediction of the other classes, this objective function distills the
features that positively indicate these two classes. Proving that this
equation has no solutions (e.g. if the two selected classes do not share
a boundary or no graphs lie within a specified distance of it) may also
reveal information about the model’s behavior. This would be done
by replacing the MIP objective with the distance of the input graph
from the decision boundary and minimizing. If the objective value to an
optimal solution of this problem is greater than §, the equation above
has no solutions. Note that in the case of 2 classes, the inner maximum
is taken over an empty set and can be discarded.

2.1.3. Finding similar graphs with maximal changes in prediction
Simultaneous optimization over multiple graphs can significantly
expand the number of possible explainability-related objectives. We
show the advantage of this new approach by examining the pattern
learned by the GNN that maximally shifts its decision with respect
to a certain class. To find this pattern, we can find a pair of graphs
G, G, that are similar but cause the biggest change in the model’s
prediction of a certain class, and then look at the patterns created and
destroyed by the changes between them (e.g. cycles being created or
broken, more edges between nodes with certain features, etc.). This
may be more informative than a single representative explanation,
as it is not always clear which of the patterns a single graph has
(or possibly more importantly, does not have) that are causing the
model to behave in a certain way. The magnitude § of the change
between the two graphs can be varied, with larger values allowing
for more complex/comprehensive changes to the graph. If we quantify
the change in model prediction by the difference in the target class’s
predicted probabilities between G, and G, (i.e. f(G;,0) — f(G,,0)), it
might be difficult to see the existence or absence of a certain pattern,
because changes in probabilities get exponentially smaller for negative
logits. Therefore, we choose to quantify the prediction change by the
difference between the logits of the target class and the maximum of
the other classes. This way it is equally advantageous to add patterns
indicative of a different class to G, (or subtract them from G,) as it is

Neurocomputing 639 (2025) 130214

to add patterns indicative of the target class to G, (or subtract them
from G,). The explanation objective is then realized as follows:

0(G,,G,) = ((fc(Gl,Q) - IP:CXf,-(Gl,G)>

max
{G1.G, 1 |G| -G,]I<5)}
- (fc(GQ, 0) — max f;(G, 9)) >
i#e
(Paired Explanation)

Here, || - || can be any graph distance metric, e.g. graph edit distance.
Note that this differs substantially from aforementioned work using
MIP for neural network verification, which is concerned with the dis-
tance between specific data points and the decision boundary (i.e. the
minimum perturbations required to change their predicted classes). As
opposed to optimizing the perturbation for a fixed input, our approach
searches for the original and perturbed inputs at the same time, which
removes any influence from the data and maintains sole reliance on the
model itself for generating explanations. The two graphs do not have
to be predicted as the target class, and may not resemble the data in
that class at all, only their difference is relevant to the explanation.

2.1.4. Regularization

Many approaches incorporate regularizers into their explanation
objectives to encourage generated graphs to be within the distribution
of the training data. For regularization in XGNN, the explanation
generator is penalized during reinforcement learning for actions that
violate manually-defined sets of rules, such as the maximum number
of bonds that can be formed with a certain atom in a molecule. In GN-
Ninterpreter, the embedding of the explanation graph is penalized for
being farther from the average embedding of graphs in the training set.
While these regularization strategies may help confine the explanation
graph to a region of the input space where the model is well-defined,
they cannot make any guarantees. Furthermore, while regularization
terms can normally be balanced through some tuning procedure, this
is impossible without knowing the ground-truth explanations for the
GNN already, and attempting to determine the weights by qualitatively
judging a large number of generated graphs increases the likelihood of
mistakenly accepting spurious explanations. Therefore, we do not apply
any regularization in the objective function during our experiments. If
desired, MIPExplainer is able to incorporate regularizers such as the one
used by GNNInterpreter, although this would require quadratic terms
in the constraints and objective. Constraints for keeping explanations
in-distribution, such as those used to penalize XGNN’s explanation
generator, can be directly encoded as constraints.

2.2. Constraints

All of the above objective functions will be optimized subject to
the same set of constraints described in this section, with some con-
straints being duplicated when optimizing over multiple graphs as
in Eq. (Paired Explanation). We first make a simple assumption that
the node features are bounded by a constant M in magnitude. We
do not make any other assumptions about the node features or their
distribution. We require the number of nodes in the explanation » to
be fixed in advance, and this is MIPExplainer’s only hyperparameter.

From the range of existing GNN layers, we focus first on GraphSAGE
convolution layers, where the updated node representations X' after
a layer are calculated from existing node representations X with the
formula

X' = o(XW, + Aggregation(A, X)W, + b). (€))

The aggregation function is generally a permutation-invariant function
which combines the sets of feature vectors of each node’s neighbors
into single row vectors. For example, it can be an element-wise sum,
so that Aggregation(A4, X) = AX. Our encoding of GraphSAGE layers
will follow the work of [40].

B.B. Gaines et al.

Assume that a GNN model has ¢, GraphSAGE-based convolution
layers with sum aggregations and ReLU activations, followed by a
global feature-wise sum pooling layer and ¢, fully connected layers
with ReLU activations. In total, there are £ = ¢ +1+7 layers (indexed
as ¢;,1 < i < ¢). We will use the following notations: the matrix of
scalars, W, and the vector of scalars, b), denote the GNN’s matrix of
learned weights and learned bias vector in layer i. For convenience, we
also denote X© = X, where x;; is the jth feature of node i. We will also
add a number of intermediate decision variables to our formulation. In
every layer, @) represents the output of layer i before the application
of an activation function, and X represents ReLU(®"), the output
of layer i. In the GNN layers @@ and X are matrices with a row
vector for each node’s updated representation, and afterwards for layers
i > £, they represent vectors containing the entire graph’s pooled
representations.

To constrain @ for the convolutional layers (1 <i < £,):

o0 = xOw D 4 AxEDWO 4 b0, ©)

Note that the second term includes the multiplication of the adjacency
matrix A and the node feature matrix X~V from the early layer. Thus,
if we encode this equation directly, we will have quadratic terms in
the relaxation subproblems. There are several ways to perform the
linearization of quadratic terms consisting of a continuous variable and
a binary variable, and we will describe one such method here using big-
M constraints [45]. For a given binary variable ¢ € A and a variable
x € X bounded by M®, let e = a - x be a new intermediate decision
variable constrained as follows:

~MYg<e<MDg, 3)
x—-MP1-a)<e<x+MD1-a). (O]

If a = 0, then Eq. (3) will force e to be 0. On the other hand, if a = 1,
then Eq. (4) will force e to be equal to x. Let E® be a matrix that
encodes AX®, where each entry is the sum of the corresponding e’s
Eq. (2) can now be rewritten:

@(i) — X(i—l)VVl(i) + E(i)VV2(i) + b(i), 5)

While this step adds extra decision variables and constraints, the result-
ing system is linear, so it becomes faster to optimize.
For the pooling layer i = ¢, + 1 (with 1 representing a vector of 1s):

@© =17 x (=D, (6)
and for the fully connected layers (¢, +1 <i <?):

(i) — y =Dy O (i)
o0 = XU O 4 b0, @

For all layers except the pooling and output layers (0 < i < ¢ —1,i #
Z. + 1), we must constrain X based on the corresponding @". We
add the slack variable matrix B® in Eq. (8) in order to encode the ReLU
operation, where B") represents Re LU (—®?), the negative components
of each element of ®® discarded by the ReLU. Z() are binary decision
variables indicating the truth value of ®® > 0 elementwise. Note that
for elements of @) exactly equal to 0, the corresponding values of Z®
can still be 0, but this will not affect the computation.

X0 — g0 = g0, 8)
x® < MZ([), 9)
BD < M(1 -z, (10)
0< X9 BD < M, an
z0 e {0,1) 12)

At the indices where Z) = 0, @ is negative, Eq. (9) ensures that
the corresponding elements of the layer’s activation in X are 0. Where
Zz® = 1, & is positive, so Eq. (10) ensures that the corresponding
elements of the negative component B®) are 0. In both cases, Eq. (8)

Neurocomputing 639 (2025) 130214

ensures that @ equals its positive component minus its negative
component. For the pooling layer and output layer, we simply have
that X = @,

In order to encode the maximum output of the non-target classes
from Eq. (Class-Representative Explanation), for the last layer we in-
troduce the single decision variable y and constrain it so that y =
max; 4, X,(f). Note that X at the output layer is a vector containing
the class logits. To ensure the constraints are linear, we also introduce
a vector of decision variables d in which each element is an indicator
representing whether the corresponding element of X is the maxi-
mum element in the output of layer # when disregarding the target
class, i.e., dimension j of d is 1 if j = argmaxk#cxff) and O otherwise.
Then, y and d are constrained as follows:

vz xY), as)
y<x0+ (max(Uye)1 = Lyo)(1 = d), 14
Y d;=1.d; €{0,1}, (15)
J

where L x© and U, represent matrices of element-wise lower and
C C

upper bou;;lds for thg decision variables in X) excluding the one for
class c. Since X, A, and Z® are explicitly bounded, these bounds can
be derived via constraint propagation (further discussed in Section 3).
Eq. (13) ensures that y > maxy.., <D,(f). Eq. (14) ensures y < max,, cbf),
as one element in the right-hand side will be exactly equal to the
value of X (i) at the index where d = 1, and the rest will be values
guaranteed to be larger than it. We know that d must indicate the
correct maximum, as otherwise there would be a lower bound for y
in (13) (the correct maximum) greater than an upper bound for y in
(14) (the element identified by d), making the system inconsistent. The

constraints in (15) ensure that d is a one-hot vector.

2.3. The final MIP formulation

The overall MIP has decision variables 4, X®, @® z® B®O y 4,
e,y = a”.xiit) for 1 <r,s < N and 1 <t < d. The feasible region of these
variables is defined by the constraints in (3)-(15), which specify each
intermediate decision variable in terms of A and X alone.

In order to maximize Eq. (Class-Representative Explanation), we
can simply set our objective function to X, zf) — y. Since we have a
linear objective function and all linear constraints when integrality is
relaxed, this is a MILP. In the case of Eq. (Boundary Explanation),
additional constraints can be added to ensure that solutions lie on the
decision boundary. Specifically, to constrain the L1 distance, we add
the following constraints:

X0 -x0<s (16)
X0 -x0<s a7

When optimizing over two graphs in Eq. (Paired Explanation),
several modifications to the MIP described in the previous section are
necessary. A simple approach is to increase the size of the adjacency
matrix and constrain the appropriate elements to ensure that it is block-
diagonal. The GNN layers can then be encoded in the same way, but
the pooling layer must be modified so that features from nodes in
separate graphs (i.e. with indices corresponding to different blocks of
the adjacency matrix) are aggregated into separate representations for
the different input graphs. After this, separate decision variables are
used to encode the outputs of the fully connected layers operating on
the representations of the different graphs. Finally, the constraints in
Egs. (13)—(15) can be duplicated for each set of outputs to allow this
objective function to be represented as a linear combination of decision
variables.

B.B. Gaines et al.
2.4. Additional constraints on A and X

Additional constraints can be placed on A and X when generating
explanations. We specifically employ the following constraints in our
experiments. When the input space contains graphs with one-hot fea-
tures, we constrain the sum of each row of X to be equal to 1 to
ensure proper encoding. When the input graph is undirected, we can
add the constraints a;; = a;; for all i,j with 0 < ij <nandi < jto
ensure symmetric connections. We prevent self-loops in the explanation
by constraining the diagonal elements of A to be 0.

Because GNN layers are permutation invariant, reducing the number
of equivalent representations for each graph can greatly improve the
tractability of branch-and-bound in many situations by reducing the
number of feasible representations of the optimal solution in different
branches of the search tree. We incorporate the three types of symmetry
breaking constraints proposed by [41], which all work to limit feasible
permutations of the node ordering defined by A and X, which reduces
number of equivalent representations of graphs in the search space. The
first set of constraints imposes a partial ordering on the graph nodes
by ensuring each node has an edge to at least one other node with a
smaller index, which also ensures that the explanation graphs are con-
nected. The second set of constraints imposes a lexicographic ordering
on the adjacency matrix. The third group of constraints ensures that the
node receiving the first index also has the highest number of neighbors.
Their work shows that these three constraints are compatible and do
not exclude any graphs from the search space.

2.5. Generalizing to other GNNs

Many highly performant GNN architectures can be perfectly rep-
resented by linear and quadratic constraints, and many more can be
closely approximated. For example, if we choose our aggregation func-
tion to be a feature-wise average instead of a feature-wise sum, we can
simply modify constraint (6) as @) = 17@(~D % fori=¢,+1.If mean
aggregation is used in Eq. (1), we could use another set of decision
variables D for each layer, where row j of D will represent the
feature-wise average of the neighbors of node j. To properly constrain
DY, the constraint of 117 A)D® = AX can be included in the model.
The multiplication of D by elements of A on the left-hand side of this
expression can be linearized as previously described. Now, constraint
(2) can be changed to:

o) = X(i—l)Wl(i) + D(i)Wz(i) + D

In passing layer from a Graph Isomorphism Network [46], updated
node representations are calculated as X’ = h((A + (1 + €)I)X) where h
is a neural network, and ¢ is a constant. We can split this computation
by constraining intermediate decision variables according to the inner
piece, AX + ((1 + €))X, and the application of the neural network to
those intermediate variables, which can be encoded with constraints
similar to those in Egs. (3)-(12). The work in [40] also describes a way
to encode GCN layers with linear constraints.

2.6. The optimization algorithm

We employ a standard branch and bound procedure [47], along
with cutting planes and heuristics, to find a globally optimal solution
efficiently. In Algorithm 1 we describe the most basic form of this
approach for solving our MIP described in the previous section, which
is represented by its set of constraints C and objective function o. We
obtain an initial solution at the root of a search tree by choosing an
initial graph G, = (X,,A,) and applying the GNN to obtain initial
values for all the intermediate variables.

We start by finding the optimal solution of the continuous relaxation
(i.e. the MIP with the integrality constraints removed) of the MIP
problem (line 7), which can be done quickly using the simplex method.
The objective value for the resultant optimal solution z* serves as an

Neurocomputing 639 (2025) 130214

Algorithm 1 MIP Branch and Bound Procedure

1: Input: The constraint set C, the objective function O, and an initial
graph G, = (X, Ag)

2: Initialize a queue Q containing only C as a single element

3 L« O(Gy)

4 z < G,

5: while Q is not empty do

6: N « search node popped from Q

7 Solve the continuous relaxation of N, denoted N,, and store the

result in z*

U« 0(z%
9: if N, was feasible and U > L then
10: if z* obeys all integrality constraints, defining a valid graph G*
then
11: z« z*
12: L <« O(G*)
13: else
14: v < An integer variable with a non-integral value z in z*
15: Add the subproblems N U {v < |z}|} and N U {v > [Z]]} to
o
16: end if
17: else
18: Prune the subtree rooted at N by continuing to the next
iteration without adding any nodes to Q
19: end if

20: end while
21: return z

upper bound U to the original problem with the additional integrality
constraints. If this solution z* happens to also satisfy all of the inte-
grality constraints of the original MIP, then it is an optimal solution
to the original problem rather than just its continuous relaxation, and
we can stop since the simplex algorithm guarantees that there are no
other solutions with better objective values. If any integer variable
takes a fractional value in the solution of the continuous relaxation
z*, for instance, v := z where z is a fraction, we branch the MIP
on v by splitting the original problem into two subproblems with the
extra constraints of v < |z| or v > [z] respectively (lines 14-15),
which partition the search space of the original problem. The optimal
solution to the original problem will then be the maximum optimal
solution of these two subproblems, which can be solved recursively in
the same way, leading to a binary tree in which nodes represent further
constrained versions of the original MIP at the root. After branching and
adding the new constraints, the two MIP subproblems together consider
all the same integral solutions as the original MIP, but the regions
considered by their linear relaxations no longer include the area where
|z] < v < [z]. As a result, the maximum of the children’s upper bounds
is still an upper bound for the parent MIP, but smaller than or equal
to the upper bound provided by the parent MIP’s linear relaxation. As
a result, our upper bound on the original MIP strictly decreases as we
explore more of the search tree. After we branch enough times, the
added constraints eventually ensure that the continuous relaxation of
the system has an integral solution, at which point we have reached
a leaf in the search tree. Each time we reach a leaf, the solution it
contains meets all of the constraints of the original problem, so its
objective value also serves as a lower bound for the optimal solution
to the original problem. Our tightest lower bound L increases as we
find leaves with better and better solutions (lines 10-12). The upper
and lower bounds tighten as we search the tree, and eventually meet,
at which point the solution z for which O(z) = L proven to be the
optimal. Crucially, we do not need to explore the entire search tree for
this to happen. If the continuous relaxation solved at an internal node is
infeasible or has a maximum objective value that is lower than or equal
to our current lower bound, we do not have to search the branch rooted

B.B. Gaines et al.

at that node because no new optimal solution can lie in that subtree
(line 18). The process stops when there are no more subproblems to
explore, at which point we will have found an optimal solution to the
original MIP. In our experiments, we use Gurobi Optimizer [48], a fast
and efficient solver, to find an optimal solution to the MIP proposed
in Section 2.3. While the theoretical complexity of this algorithm is
exponential, the average complexity is significantly lower in practice,
making it possible to find and guarantee an optimal solution in many
situations.

3. Practical considerations

In practice, it can be difficult to solve MIPs corresponding to large
GNNs, and several techniques are needed to make the process tractable.
Often, just finding an initial setting for all of the decision variables
that satisfies all constraints is difficult. In our experiments, we found
that this initial step can actually take longer than the subsequent
optimization. This problem can be completely eliminated with a warm
start. Starting from an arbitrary input graph (either from the dataset
or not), we can compute a forward pass through the network to obtain
a valid setting of initial values for almost all of the decision variables.
In cases where additional constraints have been imposed on the graph,
such as the ones used to break symmetry, any graph used as a warm
start must be converted into the canonical form that also satisfies
these constraints. When optimizing Eq. (Boundary Explanation), we
may not have an initial graph within the specified distance of the
decision boundary. In this case, we can start by omitting the associated
constraints and minimizing the distance to the decision boundary until
they are satisfied. This solution can then be used to warm-start the full
MIP.

Although a single, large number M can be used to bound all of
the continuous decision variables, tighter bounds greatly reduce the
time needed to compute optimal solutions. While automated bound-
tightening procedures exist, it is faster to use knowledge of the problem
to bound manually. Each hidden representation computed by the model
is encoded by a separate set of decision variables. Assuming we have
bounded the decision variables for one, we can compute bounds for
the outputs of a following transformation. For example, given a hidden
representation vector x with element-wise lower bound vector x; and
upper bound vector x;;, we can get upper and lower bounds on the
output of a linear layer x' = Wx + b:

x|, =ReLU(W)x, + ReLU(-W)xy + b,
/

x; =ReLUW)xy + ReLU(-W)x +b.

18

Given the bounds on the explanation graph (i.e., X and A), we
can propagate the bounds forward through the GNN to iteratively
bound the set of decision variables for each hidden representation.
Bounds for the outputs of ReLU activation layers are the same as those
for their inputs, but clipped below at 0. In the case of layers like
GraphSAGE convolutions where the output is the sum of several matrix
multiplications, bounds can be derived for each term in the sum and
then added together. This strategy of constraint propagation has been
explored and validated in [36].

Floating-point precision errors can lead to serious problems for MIP
solvers. In cases where decision variables can take both small and large
values, a significant amount of time may be needed to avoid numerical
instability. This problem emerges when the weights of GNNs become
very small, an effect often produced by regularization. However, we
found that weights below a certain threshold (e.g., we chose 10~5)
could be floored to zero without significantly affecting the behavior of
the network. All performance metrics for the networks used in the ex-
periments were computed after the networks were pruned in this way.
We also found that smoothing networks with weight regularization
during training improved MIP solution times.

Neurocomputing 639 (2025) 130214
4. Experimental evaluation

We use two synthetic datasets and four real-world datasets to evalu-
ate our method: Is_Acyclic, Shapes, MUTAG, NCI1, IMDB-BINARY, and
REDDIT-BINARY (see Table 1). These datasets have all been previously
used to compare GNN explanation methods. The Is_Acyclic dataset
comes from XGNN’s experiments, and has two classes consisting of
Cyclic and Acyclic graphs of various types. The Cyclic class includes
graphs like grids, single cycles, and wheels, while the Acyclic class
includes paths and various types of trees. Every node is given the same
feature, a single constant, in order to isolate the explanation methods’
ability to capture structural information. For the Shapes dataset, which
comes from GNNInterpreter’s experiments, graphs are first generated
from one of five base classes: Lollipop graphs contain a fully connected
component with one connection to a path graph’s end node, Grid graphs
are lattices where each internal node has 4 neighbors, Star graphs
have multiple outer nodes connected to a single central node, and
Wheel graphs are Star graphs with a single cycle connecting the outer
nodes. For each of these graphs, a uniform proportion between 0 and
0.2 is chosen, and the number of edges in the graph is increased by that
amount by adding in edges uniformly at random. The features of each
node are the same as in Is_Acyclic. The MUTAG dataset [49] consists of
graphs of chemical compounds, where nodes represent atoms and edges
represent bonds between them. Each compound is classified as being
either mutagenic or non-mutagenic. As described by the creators of this
dataset and in [50], mutagenic molecules tend to have higher numbers
of fused rings of carbon atoms. For this dataset, each node’s features
are a one-hot vector indicating atom type. NCI1 [51] is an additional
molecule dataset that comes from a non-small cell lung human tumor
cell line growth inhibition assay. IMDB-BINARY [52] contains networks
of actors participating in movies, with edges linking costars. REDDIT-
BINARY [52] is built from comment threads with nodes as users and
edges between users where at least one has replied to the other,
with graphs labeled according to whether the thread came from a
question/answer subreddit or a discussion-based subreddit. As IMDB-
BINARY and NCI1 do not have obvious ground-truth explanations to
distinguish their classes, we will discuss quantitative but not qualitative
results for these datasets.

To assess the stability of different explanation methods (i.e., to
quantify the variation among generated explanations of each method),
we run repeated experiments with each explanation method and mea-
sure the average graph edit distance between all pairs of explanations.
Graph edit distance, as described in [43], is the minimum number of
graph edit operations (vertex/edge insertions/deletions/substitutions)
needed to transform one graph into another. A lower average graph
edit distance indicates a more stable explanation method.

4.1. Setup and implementation

Each dataset is randomly split into a training set (80%) for training
a GNN model and a test set (20%) for measuring its accuracy. The
performance of our GNN models trained on the six datasets is reported
in Table 2, and is comparable to those previously used to test other
GNN explanation methods. We compare MIPExplainer with the five
most relevant approaches: XGNN, GNNInterpreter, PAGE, D4Explainer,
and KnowGNN. To run experiments with these comparison methods, we
use the implementations provided by their respective authors: XGNN in
DIG! [7]1,GNNInterpreter’ and PAGE,*> D4Explainer,’ and KnowGNN.®
All methods are run with the same hardware including 32 Processors,

! https://github.com/divelab/DIG

2 https://github.com/yolandalalala/GNNInterpreter

3 https://github.com/jordan7186,/PAGE

4 https://github.com/Graph-and-Geometric-Learning/D4Explainer
5 https://github.com/1xf770824530/KnowGNN

B.B. Gaines et al.

Neurocomputing 639 (2025) 130214

Table 1
Dataset summary and statistics.
Graphs # Classes Average # of nodes Average # of edges # Node features
Shapes 8000 5 27.230 144.927 1
Is_Acyclic 533 2 28.463 68.079 1
MUTAG 188 2 17.931 39.585 7
NCI1 3847 2 29.946 65.053 8
IMDB-BINARY 1000 2 19.773 193.062 1
REDDIT-BINARY 2000 2 429.627 995.508 1
32G of RAM, and an NVidia Tesla A100 (unnecessary for MIPExplainer, Table 2

which runs only on the CPU). As no clear strategy exists to tune all
of their hyperparameters, we use the default hyperparameter settings
provided in their papers as much as possible. An exception was made
for XGNN because the default regularization weights provided by the
authors cause the graph generator to quickly learn a policy that stopped
after the first node in several instances. To fix this, we have increased
the reward for creating additional valid edges to the point that it
is favorable for the explanation model to generate reasonably-sized
explanations. In all experiments, the GNNs use GraphSAGE-style con-
volutions with summation as the aggregation operator, followed by
a global mean pooling layer, and finally several fully-connected (FC)
layers. ReLU activations are placed between each hidden layer. For the
Is_Acyclic, Shapes, and IMDB-BINARY datasets, the GNN uses 2 convo-
lutional layers computing 16 features per node, a FC layer computing
8 features, and a final FC layer to compute the class logits. For the
REDDIT-BINARY dataset, we trained a deeper, less-wide network with
4 convolutional layers computing 8 features per node and two FC layers
computing 8 features per graph before the final FC layer computing
the 2 class logits. For the MUTAG and NCI1 datasets, the GNN uses
2 convolutional layers computing 64 and 32 features per node, two
FC layers computing 16 and 8 features per graph, and the final FC
layer computing the logits. All GNNs are implemented using PyTorch-
Geometric [53] and trained for 200 epochs, optimizing with Adam [54]
with a learning rate of 1073 and L2 regularization with weight 10~4.

XGNN’s graph generator policy network penalizes the violation of
valence constraints while generating molecules on the MUTAG dataset.
In the experiments with MIPExplainer, adjacency matrices were con-
strained to be symmetric to represent undirected connected graphs
without self-loops. For the MUTAG dataset, node features were con-
strained to one-hot vectors by ensuring the sum of the elements in each
row added up to 1, but no chemistry-specific constraints were used.
Based on the reported time from all methods using the same hardware,
we observed that two hours was enough for most methods to report
reasonable performance. If MIPExplainer did not prove optimality after
two hours, we report the best solution found. To ensure that any
resemblance to target classes would not come from an initial solution,
every explanation optimized by MIPExplainer was initialized with a
graph generated by adding every possible edge to a line graph with
probability 0.5.

We use stability of generated explanations, i.e., average graph edit
distance (GED including node features) across multiple runs, as a
performance metric for each explanation method. Note that stability
does not guarantee the quality of the explanation graphs themselves,
and thus is a necessary but not sufficient measure of performance.
First, we generate explanations with 5, 6, 7, and 8 nodes (the baseline
methods sometimes produce explanations that do not have the maxi-
mum number of nodes) using each method on each dataset 5 times.
Then, we compute the average GED among the 5 explanations. Table
3 shows these metrics averaged over the different numbers of nodes
when generating class representatives, and is discussed in Section 4.2.5.
A full table containing individual results for each number of nodes can
be found in Appendix.

Performance summary of our trained GNNs.

Train accuracy Test accuracy Number of model

parameters
Shapes 0.991 0.993 757
Is_Acyclic 0.998 1.000 730
MUTAG 0.893 0.895 5770
NCIl 0.820 0.810 5898
IMDB-BINARY 0.718 0.715 730
REDDIT-BINARY 0.856 0.858 594

4.2. Results: Class representative explanations

We start by analyzing the class representatives found by optimizing
over Eq. (Class-Representative Explanation) and comparing them to
the representatives found by XGNN, GNNInterpreter, and PAGE. The
main results from our experiments are discussed in Sections 4.2.1-4.2.3
as shown in Tables 4-6. These tables show 3 explanations randomly
chosen among the results of 5 runs for each method and each dataset
with each explanation size.

4.2.1. Shapes

For the Shapes dataset, we can consistently recognize class-specific
features in each of the explanations generated by MIPExplainer, all
of which are proven to be optimal. Despite the fact that a significant
amount of noise has been added to the training data, the explanations
are relatively clean. This may explain why the explanations for Star
graphs are not perfect stars, because in the dataset, Star graphs often
had noisy edges added between the outer nodes. Similarly, this may
be the reason that explanations for the Lollipop class sometimes have
cycles instead of tails. In reality, graphs from this class usually just
consisted of a clique amid a less-densely connected group of nodes after
the noisy edges were added (since no edges can be added to the clique
in the original graph, they are all added to the stem). For reference,
examples from the four classes in the Shapes dataset are shown in Fig.
2.

As shown in Table 4, MIPExplainer generates reasonable class rep-
resentatives for all of the different shapes and across the different graph
sizes. GNNInterpreter and XGNN perform comparably to MIPExplainer,
but we do see that GNNInterpreter will sometimes generate path graphs
across all shapes, whereas XGNN seems to generate shapes resembling
lollipops for the classes of Star and Wheel. Although GNNInterpreter
and XGNN can find suitable explanations, the same experimental set-
tings with different parameter initializations lead to widely varying
results (low stability). This is also the case in the rest of our experi-
ments with different models and datasets (also seen in Table 3). PAGE
produces reasonable explanations for most of the classes except for the
Star class, for which it generated a structure found in graphs from all
of the classes (despite attempts at parameter tuning for this class, the
resulting explanation remained unchanged). This is an instance where
our stability metric is not sufficient for measuring the performance of
explanation methods.

B.B. Gaines et al.

Table 3

Neurocomputing 639 (2025) 130214

Stability comparison: average edit distance between 5 generated example graphs, averaged for numbers of nodes between 5 and 8 inclusive. Time limit is 2 h.

Dataset Method: Average edit distance

Class MIPExplainer GNNInterpreter XGNN PAGE D4Explainer KnowGNN

Grid 0.0 + 0.00 3.6 + 0.89 3.0 + 2.42 2.0 + 0.46 2.6 + 0.47 1.4 + 1.00
Shapes Lollipop 0.0 + 0.00 3.5 +0.77 3.4 + 2.03 3.4 + 1.81 4.0 + 1.85 1.4 + 0.0

Star 0.0 + 0.00 3.9 +1.21 3.0 + 2.60 0.0 + 0.00 3.2 + 1.59 1.4 + 0.28

Wheel 0.75 + 1.0 3.3 + 1.04 4.0 + 3.32 4.0 + 2.26 29 + 1.37 1.4 + 0.63
s Acyclic Acyclic 0.15 + 0.30 3.5 +0.77 2.8 + 1.62 0.0 + 0.00 3.0 + 1.38 1.6 + 1.18

- Cyclic 0.0 + 0.00 3.1 + 1.05 3.2 +1.82 3.4 +1.14 3.2 + 1.40 1.6 + 0.57

MUTAG Mutagen 0.0 + 0.00 8.1 + 1.19 7.8 + 2.17 0.8 + 0.57 6.0 + 1.14 3.3 + 0.44

Nonmutagen 3.1 + 4.53 7.8 + 1.56 7.4 + 2.39 0.0 + 0.00 5.8 + 1.53 3.1 +1.35
NCIl Active 8.2 + 4.12 7.6 + 1.69 7.4 + 2.14 3.7 + 0.76 7.0 + 1.40 3.6 + 1.33

Non-Active 0.5 + 0.60 9.4 + 3.46 7.0 + 2.17 2.7 + 0.60 6.8 + 1.72 3.3 +1.27
IMDB-BINARY Action 0.0 + 0.00 3.3+ 173 4.0 + 3.32 3.8 + 4.17 4.9 + 5.61 1.6 £ 0.75

Romance 0.2 + 0.40 4.4 + 1.21 3.4 + 214 0.0 + 0.00 2.0 + 2.56 1.4 + 0.44
REDDIT-BINARY Discussion 0.0 + 0.00 5.0 + 4.07 2.8 + 2.36 OOM OOM OOM

QA 0.0 + 0.00 3.6 + 1.26 2.9 + 1.01 OOM OOM OOM

(a) Wheels (b) Lollipops
(c) Stars (d) Grids

Fig. 2. Randomly selected graphs from the Shapes dataset.

4.2.2. Is Acyclic

In the experiments with Is_Acyclic, MIPExplainer always explains
the Cyclic class with a complete graph, which has the maximum pos-
sible number of cycles. It explains the Acyclic class with a Star graph,
which is one of the most straightforward examples from the class. PAGE
performs very well on the Acyclic class, but the results on the Cyclic
class are less stable, as it generates path graphs in multiple trials. In
contrast, the explanation graphs of XGNN and GNNInterpreter for the
Cyclic class sometimes contain nodes with a single neighbor, and their
explanations for the Acyclic class often include many cycles. D4Ex-
plainer always produced graphs with cycles, while KnowGNN always
produced graphs without cycles. For MIPExplainer, while optimality
was achieved for all results, its runtime was notably different between
the Cyclic and Acyclic classes as shown in Table 5. Although the
average time to generate the Cyclic explanation increased by less than
a second between 5 nodes and 8 nodes, the average time to generate
the Acyclic explanation increased from around 5 s to around 144. This
is partially due to the number of graph representations in the equiv-
alence class of each explanation. A fully connected graph with equal
node features only has a single adjacency matrix and feature matrix
representation, while a Star graph with » nodes has n representations

before symmetry breaking constraints are added, as there are n options
for the position of the central node in the node ordering. As a result,
despite the solution having the same number of nodes and fewer edges,
the solver may explore more of the search tree to prove the optimality
of the Acyclic explanation. While the symmetry breaking techniques we
employed do mitigate this problem, they do not alleviate it completely.
Other causes could have to do with the structure of the GNN itself
and numerical issues. Example plots of the objective bounds and the
number of explored and unexplored search nodes during the search for
an optimal solution can be found in Appendix.

To further visualize the behavior of MIPExplainer, in Fig. 3 we show
all of the intermediate incumbent solutions discovered while searching
for an explanation for our GNN’s prediction of the Wheel dataset. These
were obtained when new graphs were found during branch and bound
that improved upon the previous incumbent solution’s objective value.

4.2.3. MUTAG

For the mutagenic class of the MUTAG dataset, MIPExplainer pro-
duces a complete graph of carbon atoms. While the presence of carbon
cycles is an important factor in the mutagenicity of organic molecules,
they appear exclusively as rings of 5 or 6 carbon atoms. None of

B.B. Gaines et al.

Neurocomputing 639 (2025) 130214

Table 4
Explanations from each method for the Shapes GNN.
Method: MIPExplainer GNNInterpreter XGNN
Class # Nodes
Grid . ..I |
Lollipop 5 & :) - .. : 7 .'
. ".‘ '..'. ..: '. _...‘ p. . -.".' -.,..' :
Star 5 . N)) N, L . ’
Wheel 5 : .' : 7| j
6 ". IR .~.."’ I VZa\Y .'.. .":.- .-,:.~
(continued on next page)
‘ I R e N o o
* ‘..“ - ro a N VA, v * o v o
. o e o o ®
.-..o L] o © e @ e ®

Fig. 3. Algorithmic behavior: improved solutions over the branch and bound tree search starting from a randomly initialized graph from the left all the way to the final optimal

solution on the right.

the explanations generated by the baseline methods contained a cycle
of carbon atoms. For nonmutagens, MIPExplainer produces molecules
with carbon atoms and bromine atoms, the latter of which appear
in 2 of them. Notably, any two carbon atoms in these explanations
have a bromine atom in between that ensures there are no carbon
cycles, but we cannot clearly state that this is the pattern that the
GNN is using to differentiate the classes. The explanations of the non-
mutagenic class are actually less reasonable across all methods, which
is expected since non-mutagens are more accurately described by the

10

absence of mutagenic features than by the presence of non-mutagenic
features. PAGE struggled the most on this dataset, it only produced
path graphs of carbon atoms for both classes. On the other hand,
all baselines produced completely inconsistent results with seemingly
random structure.

Due to the larger size of the GNN model and the introduction of
node features in MUTAG, almost none of MIPExplainer’s explanation
graphs were able to be verified as optimal. However, even starting from
random initialization graphs every time, the outputs were very stable

B.B. Gaines et al.

Table 4 (continued).

Neurocomputing 639 (2025) 130214

Method:
Nodes

PAGE

Class

D4Explainer

KnowGNN

Grid 5

Lollipop 5

Star 5

Wheel 5

and often extremely close to the upper bound established by the solver.
While MIPExplainer’s full runtime may be longer than that of other
methods in several settings, our experimental results demonstrate that
the method is practically useful even with runtime limits that stop the
optimization procedure early.

4.2.4. REDDIT-BINARY

The REDDIT-BINARY dataset contains graphs representing the struc-
ture of comments sections on Reddit, with nodes representing users
and edges between pairs of users if one replied to the other. The two
classes contain posts from discussion-based forums and Question/An-
swer (QA)-based forums. MIPExplainer produces explanations that are
aligned with the fact that discussion-based forums would have a denser
reply structure, while QA-based forums would tend to be more tree-
like with the original user as the root. This is reflected in some of
GNNInterpreter’s results, but not most, especially with higher numbers
of nodes in the explanation graph. XGNN also tended to produce more
densely connected graphs for the discussion class, but this would be
hard to see without prior knowledge. Because the graphs from this
dataset are significantly larger in size, the remaining three baselines
ran out of memory and were not able to produce any results.

11

4.2.5. Stability and runtime

Table 3 clearly shows the high stability of MIPExplainer with sub-
stantially lower graph edit distances on average over the generated ex-
planations than GNNInterpreter and XGNN which both rely on stochas-
tic optimization. In our MIPExplainer, small variations in explanations
are due to the existence of multiple explanation graphs with the exact
same objective value, which tend to be extremely similar (as observed
in our experiments on Shapes and Is_Acyclic data). On MUTAG, the
algorithm could run out of time before finding an optimal solution,
which, however, rarely caused deviations, as the best solution was
generally found much earlier than it was proven to be optimal. The only
case in which MIPExplainer does not achieve the highest stability was
with the NCI1 dataset, which could have a number of causes. Not only
was this GNN the largest, not allowing us to prove optimality within
the time limit, but this task was also the most complex and without a
clear ground-truth. KnowGNN and PAGE are also relatively stable in
certain experimental settings, but by cross-referencing Tables 4-7 we
observe that in these cases the explanatory graphs are not related to
the ground truth of the dataset.

The runtimes for all of our experiments are shown in Table 8. Note
that only the time recorded for our method is the convergence time
whereas for all other methods, the runtime depends on the value of a
hyperparameter which is the number of maximum iterations. The run-
time in Table 8 for these methods was obtained by using their default

B.B. Gaines et al.

Table 5
Explanations from each method for the Is_Acyclic GNN.

Neurocomputing 639 (2025) 130214

Method: MIPExplainer

Class # Nodes

GNNInterpreter

XGNN

Acyclic 5

Cyclic 5

8

Method:
Nodes

PAGE D4Explainer

Class

KnowGNN

Acyclic 5

Cyclic 5

hyperparameter values in their original implementations. These meth-
ods can run arbitrarily long with different hyperparameter choices,
but without any convergence guarantee. Most importantly, there is
no guidance on how to choose proper values for this hyperparameter,
so we report their default runtimes. While the computational cost of
convergence is significant, it is also necessary when generating ex-
planations without any ground truth. Furthermore, the computational
complexity of MIPExplainer does not depend on the size of the dataset
or the graphs it contains, allowing it to be applied to datasets like
REDDIT-BINARY where baseline methods such as PAGE, D4Explainer,
and KnowGNN, run out of memory with the same hardware configu-
ration. Various methods for improving MIP encodings of ReLU neural
networks [55-57] can also be used to reduce MIPExplainer’s runtime.

4.3. Results: Alternative objectives

We now discuss the results we obtained when optimizing over the
alternate objective functions that we proposed in Sections 2.1.2-2.1.3.

12

4.3.1. Boundary explanations

Fig. 4 shows the result of encoding GNNs with MIPs and optimizing
the objective defined in Eq. (Boundary Explanation) with various pairs
of classes. Between Cyclic and Acyclic classes, the identified graph is
half completely acyclic and half densely connected, so it is understand-
able why this might be a hard-to-classify case. Applying this same
explanation objective to a multi-class problem on the Shapes dataset
provided more diverse results. Part of the reason for this is that not
every pair of classes must share a decision boundary. Nevertheless, each
explanation does exhibit features of the prototypes used to construct
the corresponding classes in the datasets. For instance, the Wheel/Grid
explanation contains both lattice-like structures and an outer cycle. The
Star/Lollipop graph does have a sparsely connected subgraph and a
more densely connected subgraph, but the densely-connected subgraph
seems to be composed of two Star subgraphs. Fig. 4(d) shows a pattern
that GNN model exhibits as difficult to distinguish between Lollipop
and Wheel, but is not easily connected to ground-truth knowledge
about the distribution of the data in the two classes.

B.B. Gaines et al.

Table 6

Neurocomputing 639 (2025) 130214

Explanations from each method for the MUTAG GNN. Atom types are assigned to node colors as follows: gray=Carbon, blue=Nitrogen,

red=Oxygen, cyan=Fluorine, purple=lodine, green=Chlorine, and brown=Bromine.

Class

Method:
Nodes

MIPExplainer

GNNInterpreter

XGNN

Mutagen

Nonmutagen

Class

Mutagen

Nonmutagen

Table 7

Explanations for a GNN trained on REDDIT-BINARY.

Class

Method:
Nodes

Discussion 5

MIPExplainer

QA

GNNInterpreter

XGNN

13

PAGE, D4Explainer, and KnowGNN all ran out of memory before generating any explanations.

B.B. Gaines et al. Neurocomputing 639 (2025) 130214

Table 8
Runtime of explanation methods in seconds given a time limit of 2 h, averaged over 5 runs. Note that baseline methods all require a hyperparameter to specify the maximum
number of iterations, so the runtime with the default values for this hyperparameter are shown here for these methods, which does not correspond to convergence time.

Dataset Class Method: Runtime (s)
Nodes MIPExplainer GNNInterpreter XGNN PAGE D4Explainer KnowGNN
5 2.833 + 0.138 7.563 + 0.018 11.644 + 0.196 169.229 + 35.599 6636.139 + 13.134 34.769 + 11.610
> 6 5.787 + 1.258 7.614 + 0.040 14.964 + 0.151 168.219 + 27.860 6624.593 + 5.153 41.541 + 9.323
& 7 31.601 + 9.317 7.648 + 0.022 17.817 + 0.149 196.568 + 56.987 6632.882 + 13.970 81.888 + 62.356
8 129.581 + 44.449 7.667 + 0.007 20.497 + 0.735 186.375 + 39.010 6647.856 + 36.116 79.794 + 32.195
5 3.347 + 0.310 7.631 + 0.016 11.543 + 0.102 1722.388 + 1645.125 6638.538 + 6.854 44.444 + 6.163
.QQQ 6 9.284 + 2.155 7.634 + 0.013 15.048 + 0.410 2446.997 + 1744.256 6655.414 + 22.061 92.424 + 83.872
o \9\\.' 7 84.935 + 57.100 7.661 + 0.019 17.934 + 0.370 4519.390 + 2483.927 6642.972 + 15.999 88.168 + 84.727
&Qe’ 8 395.661 + 35.234 7.705 + 0.027 19.852 + 0.355 4544.374 + 2391.289 6637.966 + 13.236 96.729 + 69.865
)
5 2,679 + 0.211 7.560 + 0.014 11.512 + 0.173 1092.232 + 24.380 6640.302 + 11.576 44.053 + 10.285
< 6 8.565 + 0.593 7.592 + 0.007 14.955 + 0.279 981.970 + 201.647 6641.986 + 15.288 1555.602 + 2019.522
‘b\? 7 18.440 + 3.583 7.624 + 0.014 17.942 + 0.440 960.851 + 177.717 6633.952 + 11.672 330.358 + 575.275
8 201.184 + 10.097 7.659 + 0.016 19.931 + 0.673 1052.084 + 156.791 6641.880 + 6.828 67.176 + 13.427
5 2.574 + 0.295 7.716 + 0.255 11.550 + 0.043 339.397 + 68.815 6638.569 + 9.102 57.327 + 24.986
0@\ 6 4.852 + 0.811 7.641 + 0.010 15.507 + 0.763 287.603 + 89.035 6642.933 + 8.283 42.357 + 3.097
N 7 30.555 + 27.573 7.652 + 0.010 18.047 + 0.395 267.701 + 62.479 6640.200 + 9.726 79.994 + 49.452
8 103.380 + 6.843 7.706 + 0.051 20.095 + 0.387 344.541 + 81.041 6639.850 + 10.452 101.561 + 82.853
5 5.031 + 1.237 7.610 + 0.015 10.040 + 0.135 70.247 + 8.764 2182.708 + 238.532 80.434 + 27.150
é& 6 8.660 + 1.731 7.626 + 0.022 13.482 + 0.528 68.175 + 9.639 2191.858 + 276.752 71.319 + 48.391
yS’A‘ 7 20.655 + 3.781 7.679 + 0.054 15.419 + 0.561 72.303 + 7.872 2064.532 + 221.328 218.001 + 264.619
ﬁ&o 8 144.003 + 18.049 7.684 + 0.013 17.265 + 0.479 74.056 + 10.106 2110.262 + 218.104 67.598 + 12.993
o
\r}; 5 2.721 + 0.356 0.027 + 0.008 9.842 + 0.057 45.882 + 53.643 2126.876 + 89.113 61.424 + 29.783
<& 6 2.389 + 0.310 0.024 + 0.000 12.877 + 0.482 81.296 + 60.228 2204.120 + 324.208 110.652 + 122.933
(_,4.(' 7 2.497 + 0.637 0.030 + 0.003 15.257 + 0.377 94.117 + 63.071 2033.200 + 354.808 112,535 + 58.912
8 3.160 + 0.359 0.115 + 0.051 18.216 + 1.273 82.400 + 46.520 1929.667 + 152.450 107.532 + 36.047
5 643.690 + 40.088 0.024 + 0.001 8.701 + 0.455 77.669 + 8.570 660.824 + 61.413 41.135 + 7.637
°§;° 6 2344.545 + 305.734 0.025 + 0.004 10.305 + 0.297 77.002 + 13.707 690.062 + 76.165 58.004 + 15.924
@\»@ 7 2838.178 + 677.224 0.060 + 0.060 12.069 + 0.257 82.721 + 12.034 678.170 + 48.154 71.139 + 21.163
&YQ 8 6685.271 + 1154.943 0.114 + 0.007 14.727 + 0.619 85.198 + 11.644 670.695 + 45.891 393.042 + 395.584
N
> & 5 4092.657 + 513.121 5.633 + 5.109 8.747 + 0.530 78.059 + 9.494 646.606 + 55.436 31.863 + 7.178
@% 6 7202.002 + 0.264 7.599 + 4.213 10.403 + 0.342 84.976 + 11.062 707.473 + 46.319 51.356 + 4.744
é“\’ 7 7201.925 + 0.312 9.659 + 0.049 12.595 + 0.731 79.095 + 14.449 689.110 + 65.032 88.163 + 48.180
< 8 7201.931 + 0.170 7.857 + 4.304 13.946 + 0.429 71.706 + 13.730 652.691 + 52.439 98.607 + 25.698
5 7200.976 + 0.335 18.695 + 3.624 36.145 + 27.658 28.105 + 6.455 6628.768 + 7.199 293.771 + 139.735
3 6 7201.089 + 0.158 42.992 + 40.033 73.601 + 43.805 38.930 + 3.414 6635.254 + 16.367 437.854 + 340.840
YS? 7 7201.499 + 0.837 12.780 + 28.418 133.788 + 124.983 25.549 + 5.204 6622.113 + 4.287 182.442 + 110.223
8 7201.659 + 0.637 17.832 + 5.407 371.441 + 209.454 37.124 + 12.530 6628.570 + 5.847 98.045 + 66.289
&
< 5 7200.941 + 0.261 0.037 + 0.020 13.650 + 2.605 19.088 + 7.303 6627.870 + 7.406 381.068 + 149.799
6 7200.610 + 0.015 0.028 + 0.001 18.425 + 6.625 14.147 + 2.998 6642.870 + 27.445 360.059 + 346.804
7 7201.064 + 0.241 0.040 + 0.007 64.451 + 31.440 17.477 + 7.124 6633.142 + 3.875 318.452 + 220.787
8 7200.968 + 0.093 0.153 + 0.061 160.083 + 90.902 15.855 + 3.352 6624.526 + 4.914 294.216 + 220.045
5 2.499 + 0.304 10.702 + 0.038 15.002 + 1.436 45.802 + 33.538 4039.482 + 460.117 91.798 + 22.387
& 6 2913 + 0.185 10.912 + 0.107 82.564 + 50.800 70.076 + 29.706 4002.983 + 324.241 498.072 + 293.310
A YS'Q 7 6.771 + 0.914 10.974 + 0.108 144.109 + 29.075 97.650 + 35.220 3774.532 + 452.741 479.132 + 358.399
\eVg. 8 132.072 + 51.895 19.732 + 13.523 151.082 + 86.939 81.356 + 40.307 3599.583 + 263.459 527.060 + 645.516
B
@Q’ 5 2.579 + 0.627 0.691 + 0.193 15.156 + 3.558 1171.962 + 1050.303 3966.199 + 258.170 181.780 + 213.022
> ‘53’ 6 2.493 + 0.337 129.888 + 81.306 29.177 + 15.858 824.337 + 1097.327 4062.581 + 484.982 117.554 + 48.547
oéb 7 6.489 + 1.069 146.370 + 83.668 65.645 + 66.173 775.247 + 1035.251 3956.617 + 461.542 490.110 + 495.073
& 8 7.682 + 1.540 23.087 + 17.984 25.137 + 4.034 1233.731 + 1104.846 3905.860 + 669.663 175.041 + 32.839
5 5.810 + 0.812 0.028 + 0.008 14.428 + 1.579 oomM OOM OOM
%;7@0 6 26.655 + 9.815 0.105 + 0.072 18.422 + 3.013 oomM OOM OOM
§ é?’ 7 140.175 + 96.354 0.658 + 0.165 20.056 + 1.840 oomM OOM OOM
<§ < 8 1021.709 + 122.451 0.964 + 1.695 32.622 + 13.243 oomM OOM OOM
&
QQ\ 5 17.026 + 2.842 15.222 + 6.558 12.253 + 0.280 OOM OOM OOM
Q‘y > 6 130.413 + 32.799 16.263 + 9.934 15.880 + 0.901 OOM OOM OOM
< 7 568.535 + 99.300 40.655 + 17.155 19.099 + 0.664 OOM OOM OOM
8 4867.402 + 885.642 48.459 + 55.990 21.044 + 0.709 OOM OOM OOM
Runtime for MIPExplainer reported to convergence unless the time limit was reached.
(a) Cyclic/Acyclic (b) Wheel/Grid (c) Star/Lollipop (d) Lollipop/Wheel

Fig. 4. Finding separation boundary exemplar graphs by solving Eq. (Boundary Explanation) via MIPExplainer on Is_Acyclic (a) and Shapes (b, ¢, and d) data.

14

~
P

" L

N
N\

—
T

(a) Grid

(b) Lollipop

Neurocomputing 639 (2025) 130214

(c) Wheel (d) Star

Fig. 5. Paired explanations for several classes from the Shapes Dataset, given a budget of 3 changes to the adjacency matrix. We aim to maximize the difference in predicted
probability for each class between the blue graphs on top (lower probability) and the orange graphs on bottom (higher probability). Differing edges within each pair are highlighted

in red.

4.3.2. Paired explanations

Fig. 5 shows explanations generated by optimizing Eq. (Paired
Explanation) for each class in the Shapes dataset with a budget of 6 = 3
edge insertions/deletions. The orange graphs on bottom correspond to
G, in Eq. (Paired Explanation), and are predicted with higher probabil-
ity than the blue graphs on top corresponding to G,. The explanation
for the Grid class shows edges being added to ensure that the graph
is composed exclusively of 4-cycles, the defining characteristic of this
class’s prototype. The Wheel explanation starts as a graph that looks
more like the Star graphs from the dataset after noise is added, but then
additional edges are added between the outer nodes to create a rim. In
the Star class explanation, we see that edges are actually taken away
from the higher graph to get to the lower graph. The edges are only
removed from the nodes with the lowest degrees, creating Star class’s
defining characteristic. For the Lollipop class, the explanation does not
seem to create any distinctive features. However, looking at the sets
of logits for both graphs, we see that the terms involving the lower-
probability (blue) graph dominated the objective, meaning that the
relevant change for this explanation is actually the removal of features
indicative of another class, in this case Stars. Fig. 6 shows the result
of adding the constraint that G, actually be predicted to the correct
class by the GNN (i.e. that its logit is at least as large as the maximum
of the other logits). Interestingly, although the changes between the
graphs can mostly be interpreted in the same way as in Fig. 5, the
bottom graphs are less immediately recognizable as instances of the
corresponding class, which is opposite to the result we expected from
adding the new constraint.

5. Conclusions and discussion

Despite the ability of GNNs to model complex patterns in graph-
structured data, their lack of transparency remains one of the major
factors hindering their application in a wide range of domains. Model-
level explanations of these networks are key to understanding the
information they learn and improving their trust and reliability. In
order to address shortcomings that limit the use of existing methods
in most real-world situations, this work proposes MIPExplainer for
generating post-hoc model-level explanations. Without a way to objec-
tively evaluate their quality, it is essential that generated explanations
are truly high-quality solutions of optimization problems that are not
sensitive to user-defined hyperparameters. MIPExplainer achieves this
by avoiding the use of both weighted regularizers and stochastic op-
timization, instead focusing on maximizing a simpler objective with
deterministic methods that are able to prove the global optimality

15

of the generated solutions. Minimal assumptions are made about the
distributions of graphs and their features, and no secondary models are
trained in the process.

The proposed method has limitations which we hope to address in
future work. While it is more general than previous methods without
specific data assumptions, it also requires different GNN layers to be in-
dividually encoded with constraints, and may require piecewise-linear
approximations for highly nonlinear components. From a practical
perspective, the runtime of MIPExplainer as described here is the most
significant drawback. Reducing symmetries in the encoding can greatly
improve runtime, but this is challenging in general, and more work
is required to understand which symmetries are the most costly when
optimizing over sets of graphs. Despite these limitations, we observe
that the proposed method is able to find reasonable explanations.

CRediT authorship contribution statement

Blake B. Gaines: Conceptualization, Methodology, Software. Chun-
jiang Zhu: Writing - original draft, Visualization. Jinbo Bi: Conceptu-
alization, Methodology, Supervision, Funding acquisition.
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.
Acknowledgments

We thank Dr. Laurent Michel for lending his expertise in the field
of discrete optimization to make this approach possible. This work
was partially supported by NIH, United States grants R01-DA051922
and U19-AI171421 to J. Bi. We thank the funding agencies for their
sponsorship, although this work does not necessarily represent their
opinions.
Appendix. Extended experimental results

See Fig. 7, Tables 9-12.

Data availability

Our data and code is publicly available on Github at https://github.
com/blake-gaines/MIPExplainer.

B.B. Gaines et al.

(a) Grid

(b) Lollipop

(c) Wheel

Neurocomputing 639 (2025) 130214

(d) Star

Fig. 6. Figures generated in the same way as in Fig. 5, except with a budget of 4 and the added constraint that the GNN must classify the orange graphs to the corresponding

classes.

300
200

Objective Value
g

500 1000 1500 2000 2500 3000 3500

Runtime (s)

20k /

Number of Nodes

150k -
100k o
50k e

[—
5001000 1500 2000 2500 3000 3500

Runtime (s)

Objective Value

Number of Nodes

200

100

5 10 15

5 10 15

Runtime (s)

20

20

Objective Value

Number of Nodes

5 10 15 20 25

Runtime (s)

Runtime (s)

Fig. 7. Solver metrics for several runs explaining the mutagen class of MUTAG (left), the acyclic class of Is_Acyclic (middle), and the wheel class of Shapes (right) with 7 nodes:
On the top, the current best solution’s objective (blue) and upper bound (red) converging to the same global optimum (the dotted black line). On the bottom, the number of

explored (green)/unexplored (orange) nodes during the search.

16

B.B. Gaines et al.

Neurocomputing 639 (2025) 130214

Table 9
Average edit distance between 5 generated example graphs. The time limit was two hours for all experiments. MIPExplainer had the lowest average edit distance in almost all
experiments.
Dataset Class Method: Average edit distance
Nodes MIPExplainer GNNInterpreter XGNN PAGE D4Explainer KnowGNN
5 0.000 + 0.000 4.400 + 2.107 1.200 + 0.748 1.600 + 1.960 2.200 + 1.661 0.000 + 0.000
> 6 0.000 + 0.000 2,600 + 0.917 1.000 + 0.632 2.400 + 1.960 2.200 + 0.600 2333 + 1.374
& 7 0.000 + 0.000 3.000 + 0.894 3.400 + 1.855 1.600 + 1.960 2.600 + 0.800 1.400 + 0.917
8 0.000 + 0.000 4.200 + 0.872 6.200 + 2.441 2.400 + 1.960 3.200 + 0.600 1.800 + 0.600
5 0.000 + 0.000 2.800 + 1.249 1.600 + 1.428 1.200 + 0.980 1.600 + 0.663 1.200 + 0.980
& 6 0.000 + 0.000 3.000 + 0.894 2.000 + 0.894 3.000 + 2.449 3.600 + 1.428 1.200 + 0.980
. VO\\” 7 0.000 + 0.000 4.000 + 1.000 4.000 + 1.000 3.600 + 4.409 6.000 + 3.098 1.200 + 0.980
& 8 0.000 + 0.000 4.400 + 1.356 6.000 + 2.145 5.600 + 6.859 4.600 + 0.490 2200 + 1.077
&
5 0.000 + 0.000 5.200 + 2.272 1.200 + 0.980 0.000 + 0.000 1.600 + 1.428 1.200 + 0.980
o 6 0.000 + 0.000 2,600 + 0.663 1.000 + 0.632 0.000 + 0.000 2.200 + 1.077 1.400 + 0.917
oF 7 0.000 + 0.000 3.200 + 0.748 3.400 + 1.200 0.000 + 0.000 4.800 + 2.088 1.200 + 0.980
8 0.000 + 0.000 4.600 + 1.356 6.600 + 3.611 0.000 + 0.000 4.400 + 1.685 1.800 + 0.600
5 0.000 + 0.000 1.800 + 0.980 0.600 + 0.490 1.800 + 1.470 1.600 + 0.800 1.000 + 1.000
& 6 0.000 + 0.000 4.000 + 1.183 2.000 + 0.775 3.600 + 2.939 2.000 + 1.342 0.800 + 0.980
Ny 7 0.000 + 0.000 3.400 + 1.428 5.200 + 2.750 3.600 + 4.409 3.400 + 1.356 1.600 + 0.800
8 3.000 + 2.049 4.000 + 0.894 8.000 + 3.924 7.200 + 5.879 4.600 + 2.059 2200 + 1.077
5 0.000 + 0.000 3.000 + 1.549 0.600 + 0.490 0.000 + 0.000 1.600 = 0.663 0.000 + 0.000
A 6 0.600 + 0.490 3.200 + 1.077 2.400 + 1.200 0.000 + 0.000 2400 + 1.114 1.600 + 0.800
& 7 0.000 + 0.000 3.000 + 1.000 4.000 + 1.414 0.000 + 0.000 3.400 + 0.917 2400 + 1.200
A&“ 8 0.000 + 0.000 4.600 + 1.020 4.000 + 0.775 0.000 + 0.000 4.800 + 1.536 2.600 + 0.917
<
& 5 0.000 + 0.000 2,600 + 1.428 1.200 + 0.600 3.000 + 2.191 1.600 + 0.490 0.800 + 0.980
& 6 0.000 + 0.000 2.200 + 1.249 2.800 + 1.077 2.400 + 1.960 2,600 + 1.356 1.400 + 0.917
« 7 0.000 + 0.000 3.000 + 1.000 3.400 + 1.744 3.000 + 2.449 4.200 + 1.778 2.000 + 1.549
8 0.000 + 0.000 4.600 + 1.020 5.600 + 1.497 5.000 + 3.550 4.600 + 2.154 2.000 + 1.265
5 0.000 + 0.000 7.000 + 1.483 5.200 + 1.327 0.800 + 0.980 4.800 + 1.661 2.800 + 0.872
& 6 0.000 + 0.000 7.300 + 1.616 7.000 + 1.414 1.200 + 0.980 5.400 + 1.497 3.000 + 1.000
@\»‘" 7 0.000 + 0.000 8.500 + 1.285 8.500 + 1.500 0.000 + 0.000 6.400 + 1.356 3.700 + 1.269
&Ysa 8 0.000 + 0.000 9.600 + 2.458 10.300 + 1.345 1.200 + 0.980 7.400 + 0.800 3.600 + 0.800
] o 5 0.000 + 0.000 5.800 + 1.327 4.600 + 1.428 0.000 + 0.000 4.400 + 1.497 1.600 + 0.800
o 6 0.000 + 0.000 7.500 + 1.204 7.000 + 1.549 0.000 + 0.000 4.600 + 0.917 2500 + 0.806
‘§° 7 2.800 + 1.327 8.400 + 1.428 7.700 + 0.781 0.000 + 0.000 7.100 + 1.446 3.900 + 0.700
< 8 9.600 + 7.838 9.500 + 1.025 10.400 + 2.107 0.000 + 0.000 7.200 + 2.272 4.600 + 1.200
5 2.000 + 2.449 5.900 + 1.375 4.800 + 1.536 3.600 + 2.939 5.500 + 1.025 1.833 + 0.373
@ 6 10.100 + 6.188 6.800 + 0.872 6.900 + 1.136 3.200 + 3.919 6.400 + 0.800 3.400 + 1.020
& 7 10.400 + 4.079 8.000 + 1.000 8.100 + 0.539 3.200 + 3.919 7.200 + 1.600 4.000 + 1.612
& 8 10.200 + 2.600 9.800 + 0.748 9.900 + 1.921 4.800 + 3.919 8.800 + 1.720 5.000 + 1.183
S
~ 5 0.000 + 0.000 6.200 + 0.980 4.600 + 1.020 2.400 + 2.939 4.600 + 1.114 3.167 + 0.687
6 0.800 + 0.980 8.400 + 1.281 5.800 + 1.077 2.400 + 2.939 6.200 + 1.249 1.500 + 0.806
7 0.000 + 0.000 8.600 + 1.356 8.100 + 0.539 2.400 + 2.939 7.700 + 0.900 4.200 + 0.872
8 1.200 + 1.470 14.300 + 4.406 9.400 + 0.917 3.600 + 2.939 8.500 + 1.118 4200 + 1.470
5 0.000 + 0.000 3.000 + 1.342 0.800 + 0.600 1.800 + 1.470 0.000 + 0.000 1.000 + 1.000
& 6 0.000 + 0.000 1.200 + 0.600 1.400 + 1.020 0.000 + 0.000 1.600 + 1.960 0.800 + 0.980
& & 7 0.000 + 0.000 3.600 + 1.281 7.200 + 3.789 3.600 + 4.409 12.600 + 11.629 2200 + 1.077
& 8 0.000 + 0.000 5.400 + 1.020 6.400 + 2.107 9.600 + 5.463 5.400 + 3.382 2.200 + 0.872
g‘” 5 0.000 + 0.000 3.600 + 1.685 0.600 + 0.490 0.000 + 0.000 0.000 + 0.000 1.000 + 1.000
< §c° 6 0.000 + 0.000 3.800 + 1.327 3.200 + 1.400 0.000 + 0.000 2,400 + 1.960 1.600 + 1.200
§ 7 0.800 + 0.980 6.200 + 2.993 3.800 + 1.778 0.000 + 0.000 0.000 + 0.000 2.000 + 0.894
hd 8 0.000 + 0.000 4.000 + 0.894 5.800 + 2.182 0.000 + 0.000 5.400 + 4.409 1.200 + 0.980
5 0.000 + 0.000 2.000 + 0.894 0.400 + 0.490 ooM ooM ooM
é’f 6 0.000 + 0.000 3.200 + 0.872 2.000 + 1.000 ooM ooM ooM
v‘? S 7 0.000 + 0.000 3.800 + 1.249 2.800 + 1.327 ooM ooM ooM
<
§ <9 8 0.000 + 0.000 11.000 + 8.649 6.000 + 2.408 ooM ooM ooM
&
QQ\ 5 0.000 + 0.000 2.000 + 0.894 2.200 + 1.327 ooM ooM ooM
& - 6 0.000 + 0.000 3.200 + 1.166 2.400 + 1.281 ooM ooM ooM
o 7 0.000 + 0.000 4.800 + 1.327 2,600 + 0.800 ooM ooM ooM
8 0.000 + 0.000 4.400 + 1.744 4.400 + 1.356 ooM ooM ooM
Table 10
Logits for Is_Acyclic explanation graphs, averaged over 5 runs with random initial solutions.
Class # Nodes Method MIPExplainer GNNInterpreter XGNN PAGE D4Explainer KnowGNN
5 Cyclic Logit —8.981 + 0.000 —1.343 + 4.048 6.417 + 0.709 —8.981 + 0.000 3.007 + 1.337 —4.913 + 0.000
Acyclic Logit 11.896 + 0.000 1.835 + 5.022 —7.456 + 0.800 11.896 + 0.000 —3.581 + 1.553 6.327 + 0.000
Cyclic Logit —-8.635 + 1.489 1.452 + 4.292 7.333 + 1.891 —8.981 + 0.000 5.044 + 1.616 -5.479 + 0.827
Acyclic Acyclic Logit 11.460 + 2.016 —1.577 + 5.222 —8.490 + 2.134 11.896 + 0.000 -5.908 + 1.823 7.105 + 1.121
7 Cyclic Logit —10.291 + 0.000 4.607 + 1.646 6.520 + 1.742 —-8.981 + 0.000 6.954 + 1.615 -4.769 + 1.472
Acyclic Logit 13.742 + 0.000 —5.415 + 1.857 —7.573 + 1.965 11.896 + 0.000 -8.063 + 1.822 6.150 + 2.001
s Cyclic Logit —10.754 + 0.000 4.924 + 1.633 6.372 + 1.884 —8.981 + 0.000 8.708 + 1.872 —4.675 + 1.033
Acyclic Logit 14.409 + 0.000 -5.771 + 1.843 —7.400 + 2.131 11.896 + 0.000 -10.042 + 2.112 6.029 + 1.402

17

(continued on next page)

B.B. Gaines et al.

Table 10 (continued).

Neurocomputing 639 (2025) 130214

Class # Nodes Method MIPExplainer GNNInterpreter XGNN PAGE D4Explainer KnowGNN
5 Cyclic Logit 7.194 + 0.000 -5.769 + 2.112 5.665 + 1.055 -2.178 + 3.873 3.257 + 1.516 -5.306 + 0.879
Acyclic Logit —8.333 + 0.000 7.516 + 2.844 -6.609 + 1.191 2.853 + 4.890 -3.863 + 1.755 6.860 + 1.192
Cyclic Logit 10.260 + 0.000 0.200 + 4.304 6.997 + 2.119 0.674 + 4.435 5.378 + 2.708 —-5.640 + 0.884
Cyclic Acyclic Logit —11.793 + 0.000 —0.080 + 5.363 -8.111 + 2.391 —0.639 + 5.466 —6.232 + 3.152 7.321 + 1.199
7 Cyclic Logit 13.488 + 0.000 —-0.293 + 1.360 7.080 + 1.031 1.128 + 4.375 5.335 + 2.873 -4.442 + 1.139
Acyclic Logit —15.436 + 0.000 0.524 + 1.625 —8.205 + 1.164 -1.197 + 5.336 —6.136 + 3.436 5.706 + 1.549
s Cyclic Logit 16.870 + 0.000 4.585 + 1.148 7.587 + 1.127 2.239 + 3.562 6.821 + 1.762 -4.824 + 1.138
Acyclic Logit —19.184 + 0.000 —5.328 + 1.362 -8.777 + 1.271 -2.602 + 4.278 —7.912 + 1.988 6.231 + 1.548
Table 11
Logits for MUTAG explanation graphs, averaged over 5 runs with random initial solutions.
Class # Nodes Method MIPExplainer GNNInterpreter XGNN PAGE DA4Explainer KnowGNN
S Nonmutagen Logit ~19.249 + 0.000 -0.422 + 5318 3.825 + 5.060 6.220 + 0.209 1.450 + 2.023 4.409 + 0.430
Mutagen Logit 11.269 + 0.000 4.048 + 7.581 -0.041 + 5502 ~7.044 + 0.251 -1.568 + 2.015 -4.862 + 0.521
6 Nonmutagen Logit ~30.439 + 0.000 ~7.649 + 7.386 -1.738 + 8.144 6.126 + 0.256 2.120 + 1.779 4.946 + 0.556
Mutagen Mutagen Logit 17.673 + 0.000 18.074 + 13.474 7.321 + 8.283 —6.932 + 0.307 -2.265 + 1.779 -5.511 + 0.674
, Nonmutagen Logit ~43.654 + 0.000 -9.854 + 13.851 -1.755 + 3.123 5.846 + 0.000 2.416 + 1.185 4.303 + 0.729
Mutagen Logit 25.229 + 0.000 20.275 + 23.446 4.828 + 6.009 ~6.595 + 0.000 -2.456 + 1.418 -4.735 + 0.883
s Nonmutagen Logit ~59.041 + 0.000 -21.218 + 12.229 -1.859 + 5.728 6.033 + 0.256 3.268 + 1.320 4.579 + 0.429
Mutagen Logit 34.029 + 0.000 41.498 + 19.722 5.446 + 7.365 -6.820 + 0.307 -3.480 + 1.59 -5.071 + 0.520
5 Nonmutagen Logit 8.614 + 0.000 1.887 + 4.245 ~3.481 + 1.849 7.492 + 0.000 2.270 + 2.323 3.709 + 1.586
Mutagen Logit ~9.948 + 0.000 -0.107 + 5.117 8.834 + 2.699 ~8.568 + 0.000 -2.472 + 2.443 -4.124 + 1.677
6 Nonmutagen Logit 8.294 + 0.000 7.146 + 8.787 2.359 + 3.898 7.492 + 0.000 3.582 + 0.897 4.751 + 0.493
Nonmutagen Mutagen Logit ~9.555 + 0.000 -0.851 + 6.609 1.204 + 6.986 ~8.568 + 0.000 -3.859 + 1.083 -5.274 + 0.59
, Nonmutagen Logit 8.086 + 0.188 -3.194 + 7.405 -0.841 x 6.120 7.492 + 0.000 0.906 + 2.465 4.028 + 0.997
Mutagen Logit -9.304 + 0.230 10.138 + 9.418 3.811 + 8576 -8.568 + 0.000 -1.147 + 2.280 -4.402 + 1.208
s Nonmutagen Logit 7.267 + 0.112 -5.436 + 10.869 -9.350 + 15.218 7.492 + 0.000 1.803 + 1.308 4.636 + 0.600
Mutagen Logit -8.306 + 0.141 13.410 + 16.078 19.037 + 22.654 -8.568 + 0.000 -1.811 + 1.494 -5.139 + 0.728
Table 12
Logits for Shapes explanation graphs, averaged over 5 runs with random initial solutions.
Class # Nodes Method Lollipop logit Wheel logit Grid logit Star logit
MIPExplainer —-1.343 + 0.000 -19.762 + 0.000 9.577 + 0.000 —20.261 + 0.000
GNNInterpreter -10.019 + 6.822 —38.818 + 40.875 —8.103 + 23.501 —14.756 + 18.554
5 XGNN -5.121 + 1.118 3.259 + 6.784 8.262 + 0.688 —31.471 + 4.109
PAGE —-11.737 + 0.000 —69.500 + 0.000 2.554 + 0.000 -5.368 + 0.000
D4Explainer -1.074 = 3.791 —29.853 + 20.463 3.409 + 9.946 -17.471 + 9.216
KnowGNN —19.235 + 0.000 —-76.560 + 0.000 —35.927 + 0.000 3.033 + 0.000
MIPExplainer —-0.846 + 0.000 —1.949 + 0.000 9.154 + 0.000 —31.297 + 0.000
GNNInterpreter -3.386 + 3.512 —21.545 + 11.607 —6.520 + 11.184 -17.602 + 8.887
6 XGNN —4.907 + 1.180 5.398 + 3.124 4.816 + 2.687 -30.366 + 3.257
PAGE —-11.737 + 0.000 —69.500 + 0.000 2.554 + 0.000 —-5.368 + 0.000
D4Explainer —2.050 + 2.131 —-21.696 + 12.831 5.361 + 5.933 —19.014 + 3.347
Grid KnowGNN -16.871 + 1.435 —71.344 + 4.756 —39.940 + 14.219 3.606 + 4.123
MIPExplainer -1.269 + 0.000 —-11.014 + 0.000 9.972 + 0.000 —25.884 + 0.000
GNNInterpreter -2.233 + 2.319 -5.299 + 5.715 3.110 + 3.284 —23.110 + 2.283
7 XGNN -1.976 + 0.763 -4.893 + 2.458 -1.793 + 7.365 —21.878 + 3.027
PAGE -11.737 + 0.000 —69.500 + 0.000 2.554 + 0.000 -5.368 + 0.000
D4Explainer -4.218 + 1.879 4.195 + 4.249 4.767 + 2.175 —29.559 + 1.943
KnowGNN —-15.973 + 1.540 —71.334 + 4.394 —29.122 + 5.736 0.596 + 0.118
MIPExplainer -1.502 + 0.000 —8.745 + 0.000 9.270 + 0.000 —26.275 + 0.000
GNNInterpreter -2.884 + 3.272 —11.408 + 6.947 1.346 + 5.852 —19.579 + 3.193
3 XGNN -2.444 + 1.782 -5.672 + 8.371 —7.951 + 13.444 —19.534 + 7.940
PAGE —-11.737 + 0.000 —69.500 + 0.000 2.554 + 0.000 -5.368 + 0.000
D4Explainer —-2.016 + 0.977 —2.345 + 3.262 1.738 + 0.764 —24.737 + 1.756
KnowGNN -14.107 + 1.599 -65.919 + 3.523 —35.266 + 6.608 0.809 + 2.823

(continued on next page)

B.B. Gaines et al.

Table 12 (continued).

Neurocomputing 639 (2025) 130214

Class # Nodes Method Lollipop logit Wheel logit Grid logit Star logit
MIPExplainer —2.791 + 0.000 —25.569 + 0.000 —5.128 + 0.000 —-19.403 + 0.000
GNNInterpreter —8.329 + 8.233 —47.927 + 27.593 —15.098 + 19.693 -9.227 + 13.375
5 XGNN —5.837 + 0.697 —0.149 + 22.146 3.951 + 10.263 —30.313 + 12.808
PAGE —3.241 + 0.616 —-16.925 + 11.837 0.406 + 7.577 —22.603 + 4.382
D4Explainer —2.714 + 2.925 —18.326 + 25.050 5.298 + 6.730 —23.279 + 13.321
KnowGNN —-16.735 + 2.282 —69.864 + 6.113 —44.351 + 7.689 3.099 + 0.060
MIPExplainer 1.580 + 0.000 —21.554 + 0.000 —-11.776 + 0.000 —-16.268 + 0.000
GNNInterpreter —3.452 + 3.391 —22.403 + 11.090 —3.795 + 8.878 —-15.728 + 7.512
XGNN -2.709 + 1.291 —-1.503 + 3.706 2.021 + 0.575 —25.136 + 2.219
6 PAGE —2.110 + 0.411 —16.864 + 14.432 —-3.108 + 2.388 —18.305 + 1.999
D4Explainer -3.640 + 2.227 —2.081 + 11.177 2.017 + 10.966 —26.423 + 9.002
Lollipop KnowGNN -16.783 + 1.646 —71.698 + 5.047 —34.148 + 6.345 1.528 + 0.143
MIPExplainer 2.700 + 0.000 —18.050 + 0.000 —-5.612 + 0.000 —21.298 + 0.000
GNNInterpreter —-3.375 + 2.803 —11.131 + 14.287 —4.683 + 8.943 —22.799 + 8.634
XGNN —3.732 + 0.426 —-1.052 + 5.294 1.356 + 2.642 —24.479 + 4.387
7 PAGE 0.988 + 1.323 —21.316 + 10.528 -1.649 + 2.181 —13.994 + 0.448
D4Explainer —2.061 + 1.600 -11.771 + 17.292 —0.007 + 2.981 —21.281 + 5.158
KnowGNN —15.534 + 1.423 —69.752 + 4.374 -31.187 + 5.709 0.488 + 0.132
MIPExplainer 7.224 + 0.000 —15.080 + 0.000 —3.129 + 0.000 —19.795 + 0.000
GNNInterpreter —2.637 + 1.622 —19.483 + 17.827 1.137 + 6.363 -18.262 + 9.027
8 XGNN —2.184 + 3.039 —-13.259 + 5.576 —6.440 + 5.380 —-14.606 + 4.264
PAGE 3.204 + 2.252 —30.502 + 7.832 -3.333 + 1.101 -9.187 + 1.162
D4Explainer -2.632 + 2.129 -1.737 + 7.246 0.536 + 8.536 —24.909 + 6.567
KnowGNN —13.654 + 3.770 —66.377 + 6.921 —29.037 + 10.104 —0.250 + 4.152
MIPExplainer —-16.772 + 0.000 —67.715 + 0.000 —72.108 + 0.000 12.894 + 0.000
GNNInterpreter -12.575 + 12.292 —42.824 + 40.005 —-31.701 + 46.376 —8.555 + 20.510
XGNN —5.020 + 1.008 2.464 + 5.862 7.990 + 0.654 —30.609 + 2.926
> PAGE —23.863 + 0.000 —80.654 + 0.000 —62.974 + 0.000 8.271 + 0.000
D4Explainer -1.621 + 2.657 —18.266 + 16.228 8.843 + 1.018 —21.837 + 6.416
KnowGNN —-17.568 + 2.282 —72.096 + 6.113 —41.543 + 7.689 3.077 + 0.060
MIPExplainer —13.064 + 0.000 —64.317 + 0.000 —48.784 + 0.000 12.183 + 0.000
GNNInterpreter —3.980 + 2.651 —21.691 + 9.404 —3.585 + 12.975 -15.661 + 2.185
XGNN -4.822 + 1.125 5.352 + 3.101 4.037 + 2.655 —29.810 + 3.144
6 PAGE —23.863 + 0.000 —80.654 + 0.000 —-62.974 + 0.000 8.271 + 0.000
D4Explainer —4.689 + 2.122 5.163 + 7.173 7.551 + 3.550 —32.577 + 6.240
Star KnowGNN —-16.685 + 1.790 —-71.660 + 5.099 —34.286 + 6.539 1.595 + 0.128
MIPExplainer —11.148 + 0.000 —61.412 + 0.000 —-33.850 + 0.000 13.072 + 0.000
GNNInterpreter —2.507 + 2.511 —22.296 + 21.034 -3.210 + 13.723 —18.741 + 8.891
7 XGNN —-1.469 + 2.153 —9.213 + 5.345 —6.549 + 8.455 —18.000 + 4.776
PAGE —23.863 + 0.000 —80.654 + 0.000 —62.974 + 0.000 8.271 + 0.000
D4Explainer —3.464 + 2.565 —0.203 + 9.555 2.798 + 4.728 —26.928 + 7.178
KnowGNN —-16.053 + 1.423 —71.349 + 4.374 —29.102 + 5.709 0.536 + 0.132
MIPExplainer —-10.722 + 0.000 —58.630 + 0.000 —23.479 + 0.000 14.536 + 0.000
GNNInterpreter -3.702 + 1.427 —7.587 + 15.924 -1.624 + 8.923 —21.715 + 8.531
3 XGNN -1.924 + 1.894 —8.287 + 9.256 —11.054 + 12.549 —18.099 + 8.888
PAGE —23.863 + 0.000 —80.654 + 0.000 —62.974 + 0.000 8.271 + 0.000
D4Explainer —3.208 + 2.232 —-0.567 + 6.732 2.633 + 3.657 —25.972 + 5.453
KnowGNN -14.111 + 1.439 —65.935 + 3.457 —35.179 + 6.498 0.813 + 2.820

19

(continued on next page)

B.B. Gaines et al.

Table 12 (continued).

Neurocomputing 639 (2025) 130214

Class # Nodes Method Lollipop logit Wheel logit Grid logit Star logit
MIPExplainer —6.180 + 0.000 13.062 + 0.000 10.323 + 0.000 —40.319 + 0.000
GNNInterpreter —=7.290 + 7.960 —42.230 + 28.326 —-3.870 + 18.922 -12.452 + 10.727
5 XGNN -5.957 + 0.275 8.335 + 2.176 8.057 + 0.745 —34.470 + 2.362
PAGE 0.012 + 1.856 —23.416 + 5.004 9.200 + 0.516 —20.101 + 0.218
D4Explainer —-0.106 + 3.509 —24.328 + 18.604 6.844 + 2.234 —20.185 + 6.592
KnowGNN —18.193 + 2.084 —73.770 + 5.580 —39.437 + 7.019 3.060 + 0.055
MIPExplainer -5.616 + 0.000 6.921 + 0.000 2.541 + 0.000 —29.458 + 0.000
GNNInterpreter -4.918 + 4.503 —18.368 + 31.653 3.615 + 6.467 —22.223 + 14.202
6 XGNN —-3.865 + 1.889 1.860 + 6.420 3.038 + 3.642 —27.369 + 5.667
PAGE -0.664 + 3.710 —22.743 + 8.427 8.564 + 0.097 —20.198 + 0.460
D4Explainer —4.891 + 1.793 —4.316 + 23.429 7.055 + 5.290 —27.932 + 14.974
Wheel KnowGNN —15.187 + 1.565 —67.861 + 4.205 —39.333 + 5.489 1.689 + 0.032
MIPExplainer -5.723 + 0.000 8.478 + 0.000 4.220 + 0.000 —30.816 + 0.000
GNNInterpreter -4.489 + 2.121 -5.192 + 15.185 5.168 + 3.163 —24.700 + 9.701
7 XGNN -1.477 + 4.376 -8.111 + 10.727 -4.639 + 12.694 —20.903 + 8.152
PAGE 0.436 + 3.599 —24.944 + 8.838 7.936 + 1.563 -19.917 + 0.122
D4Explainer —4.297 + 2.530 —0.655 + 19.448 6.685 + 2.795 —29.687 + 9.721
KnowGNN —15.454 + 1.505 —69.737 + 4.388 -31.206 + 5.727 0.548 + 0.145
MIPExplainer -4.686 + 1.538 5.669 + 5.114 1.911 + 0.883 —28.019 + 2.646
GNNInterpreter —2.193 + 0.699 -5.022 + 6.210 —5.701 + 13.464 —20.266 + 6.735
3 XGNN —1.513 + 2.686 —11.867 + 4.893 -3.223 + 12.412 —17.747 + 6.596
PAGE -1.752 + 3.467 —15.373 + 12.346 3.354 + 4.821 -19.611 + 0.229
D4Explainer -2.942 + 2.183 —2.672 + 8.559 0.716 + 5.848 —24.973 + 5.856
KnowGNN —14.515 + 1.147 —67.331 + 4.279 —33.354 + 11.934 0.913 + 2.812
References [15] M.S. Schlichtkrull, N. De Cao, I. Titov, Interpreting graph neural networks for
nlp with differentiable edge masking, 2020, arXiv preprint arXiv:2010.00577,
[1] T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional Proceedings of International Conference on Learning Representations.
networks, 2016, URL https://openreview.net/forum?id=SJU4ayYgl. [16] S. Lu, B. Liu, K.G. Mills, J. He, D. Niu, EiG-search: Generating edge-induced
[2] W.L Hamilton, R. Ying, J. Leskovec, Inductiverepresentation learning on large subgraphs for GNN explanation in linear time, 2024, URL http://arxiv.org/abs/
graphs, 2017, http://dx.doi.org/10.48550/arXiv.1706.02216, URL https://arxiv. 2405.01762, arXiv:2405.01762 [cs].
org/abs/1706.02216v4. [17] M. Vu, M.T. Thai, Pgm-explainer: Probabilistic graphical model explanations for
[3] P. Velitkovié, G. Cucurull, A. Casanova, A. Romero, P. Lid, Y. Bengio, Graph grapl.1 neural networ.ks, Adv. Neural Inf. Process..Syst. 33 (2020) 12225-12235.
[18] W. Lin, H. Lan, B. Li, Generative causal explanations for graph neural networks,

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

attention networks, 2017, http://dx.doi.org/10.48550/ARXIV.1710.10903, URL
https://arxiv.org/abs/1710.10903.

Z. Zhang, Q. Liu, H. Wang, C. Lu, C. Lee, ProtGNN: Towards self-explaining
graph neural networks, in: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 36, (no. 8) 2022, pp. 9127-9135, http://dx.doi.org/10.1609/
aaai.v36i8.20898, URL https://0js.aaai.org/index.php/AAAl/article/view/20898.
J. Yu, T. Xu, Y. Rong, Y. Bian, J. Huang, R. He, Graph information bottleneck for
subgraph recognition, in: International Conference on Learning Representations,
2020, URL https://openreview.net/forum?id=bM4Iqfg8M2k.

P. Miiller, L. Faber, K. Martinkus, R. Wattenhofer, GraphChef: Learning the recipe
of your dataset, 2023, URL https://openreview.net/forum?id=2gYZHSPFEg#all.
M. Liuy, Y. Luo, L. Wang, Y. Xie, H. Yuan, S. Gui, Z. Xu, H. Yu, J. Zhang, Y. Liu,
K. Yan, B. Oztekin, H. Liu, X. Zhang, C. Fu, S. Ji, DIG: A turnkey library for
diving into graph deep learning research, 2021, arXiv preprint arXiv:2103.12608.
H. Yuan, H. Yu, S. Gui, S. Ji, Explainability in graph neural networks: A taxo-
nomic survey, IEEE Trans. Pattern Anal. Mach. Intell. 45 (5) (2023) 5782-5799,
http://dx.doi.org/10.1109/TPAMI.2022.3204236, URL https://ieeexplore.ieee.
org/abstract/document/9875989.

J. Kakkad, J. Jannu, K. Sharma, C.C. Aggarwal, S. Medya, A survey on explain-
ability of graph neural networks, 2023, http://dx.doi.org/10.48550/ARXIV.2306.
01958, CoRR abs/2306.01958. arXiv:2306.01958.

P.E. Pope, S. Kolouri, M. Rostami, C.E. Martin, H. Hoffmann, Explainabil-
ity methods for graph convolutional neural networks, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp.
10772-10781.

S. Lu, K.G. Mills, J. He, B. Liu, D. Niu, GOAt: Explaining graph neural
networks via graph output attribution, in: The Twelfth International Confer-
ence on Learning Representations, 2024, URL https://openreview.net/forum?id=
2Q8TZWAHV4.

H. Yuan, H. Yu, J. Wang, K. Li, S. Ji, On explainability of graph neural networks
via subgraph explorations, in: International Conference on Machine Learning,
PMLR, 2021, pp. 12241-12252.

D. Luo, T. Zhao, W. Cheng, D. Xu, F. Han, W. Yu, X. Liu, H. Chen, X. Zhang,
Towards inductive and efficient explanations for graph neural networks, IEEE
Trans. Pattern Anal. Mach. Intell. 46 (8) (2024) 5245-5259, http://dx.doi.org/
10.1109/TPAMI.2024.3362584.

Z. Ying, D. Bourgeois, J. You, M. Zitnik, J. Leskovec, Gnnexplainer: Generating
explanations for graph neural networks, Adv. Neural Inf. Process. Syst. 32
(2019).

20

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

in: International Conference on Machine Learning, PMLR, 2021, pp. 6666-6679,
URL https://arxiv.org/pdf/2104.06643.pdf.

T. Schnake, O. Eberle, J. Lederer, S. Nakajima, K.T. Schiitt, K.R. Miiller, G.
Montavon, Higher-order explanations of graph neural networks via relevant
walks, IEEE Trans. Pattern Anal. Mach. Intell. 44 (11) (2021) 7581-7596,
Publisher: IEEE.

A. Lucic, M.A. Ter Hoeve, G. Tolomei, M. De Rijke, F. Silvestri, Cf-gnnexplainer:
Counterfactual explanations for graph neural networks, in: International
Conference on Artificial Intelligence and Statistics, PMLR, 2022, pp. 4499-4511.
W. Zhang, X. Li, W. Nejdl, Adversarial mask explainer for graph neural networks,
in: Proceedings of the ACM on Web Conference 2024, ACM, Singapore Singapore,
2024, pp. 861-869, http://dx.doi.org/10.1145/3589334.3645608, URL https:
//dl.acm.org/doi/10.1145/3589334.3645608.

S. Azzolin, A. Longa, P. Barbiero, P. Lio, A. Passerini, Global explainability of
GNNs via logic combination of learned concepts, in: The Eleventh International
Conference on Learning Representations, 2023, URL https://openreview.net/
forum?id=OTbRTIY4YS.

Y.M. Shin, SW. Kim, W.Y. Shin, PAGE: Prototype-based model-level explana-
tions for graph neural networks, 2022, http://dx.doi.org/10.48550/ARXIV.2210.
17159, URL https://arxiv.org/abs/2210.17159.

L.C. Magister, D. Kazhdan, V. Singh, P. Lido, GCExplainer: Human-in-the-loop
concept-based explanations for graph neural networks, in: Workshop on Human
in the Loop Learning, vol. 3, ICML, 2021, http://dx.doi.org/10.48550/ARXIV.
2107.11889, URL https://arxiv.org/abs/2107.11889.

Z. Yu, H. Gao, MAGE: Model-level graph neural networks explanations via
motif-based graph generation, 2024, arXiv:2405.12519 [cs, g-bio]. URL http:
//arxiv.org/abs/2405.12519.

H. Xuanyuan, P. Barbiero, D. Georgiev, L.C. Magister, P. Lio, Global concept-
based interpretability for graph neural networks via neuron analysis, in:
Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence
and Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence
and Thirteenth Symposium on Educational Advances in Artificial Intelligence,
in: AAAT'23/IAAI'23/EAAT'23, vol. 37, AAAI Press, 2023, pp. 10675-10683,
http://dx.doi.org/10.1609/aaai.v37i9.26267.

H. Yuan, J. Tang, X. Hu, S. Ji, XGNN: Towards model-level explanations of
graph neural networks, in: Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, ACM, Virtual Event CA USA,
2020, pp. 430-438, http://dx.doi.org/10.1145/3394486.3403085, URL https:
//dl.acm.org/doi/10.1145/3394486.3403085.

B.B. Gaines et al.

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

S. Saha, M. Das, S. Bandyopadhyay, GraphEx: A user-centric model-level ex-
plainer for graph neural networks, in: K. Maughan, R. Liu, T.F. Burns (Eds.),
The First Tiny Papers Track At ICLR 2023, Tiny Papers @ ICLR 2023, Kigali,
Rwanda, May 5, 2023, OpenReview.net, 2023, URL https://openreview.net/pdf?
id=CuE1F1MO_yR.

X. Wang, H.W. Shen, GNNInterpreter: A probabilistic generative model-level ex-
planation for graph neural networks, 2022, http://dx.doi.org/10.48550/ARXIV.
2209.07924, URL https://arxiv.org/abs/2209.07924.

J. Chen, S. Wu, A. Gupta, R. Ying, D4Explainer: In-distribution explanations of
graph neural network via discrete denoising diffusion, in: A. Oh, T. Naumann,
A. Globerson, K. Saenko, M. Hardt, S. Levine (Eds.), in: Advances in Neural
Information Processing Systems, vol. 36, Curran Associates, Inc., 2023, pp.
78964-78986, URL https://proceedings.neurips.cc/paper files/paper/2023/file/
f978¢8f3b5f399cae464e85f72e28503-Paper-Conference.pdf.

Y. Nian, Y. Chang, W. Jin, L. Lin, Globally interpretable graph learning
via distribution matching, in: Proceedings of the ACM on Web Conference
2024, WWW 24, Association for Computing Machinery, New York, NY, USA,
2024, pp. 992-1002, http://dx.doi.org/10.1145/3589334.3645674, URL https:
//dl.acm.org/doi/10.1145/3589334.3645674.

S. Saha, M. Das, S. Bandyopadhyay, GraphEx: A user-centric model-level ex-
plainer for graph neural networks, in: K. Maughan, R. Liu, T.F. Burns (Eds.),
The First Tiny Papers Track At ICLR 2023, Tiny Papers @ ICLR 2023, Kigali,
Rwanda, May 5, 2023, OpenReview.net, 2023, URL https://openreview.net/pdf?
id=CuE1F1MO_yR.

Y. Ma, X. Liu, C. Guo, B. Jin, H. Liu, KnowGNN: a knowledge-aware and
structure-sensitive model-level explainer for graph neural networks, Appl. Intell.
55 (2) (2024) 126, http://dx.doi.org/10.1007/510489-024-06034-4.

C.H. Cheng, G. Niihrenberg, H. Ruess, Maximum resilience of artificial neural
networks, in: D. D’Souza, K. Narayan Kumar (Eds.), Automated Technology
for Verification and Analysis, Springer International Publishing, Cham, 2017,
pp. 251-268, http://dx.doi.org/10.1007/978-3-319-68167-2_18, GSCC: 0000334
92 citations (Crossref) [2024-05-30] 255 citations (Semantic Scholar/DOI)
[2024-05-30].

R.R. Bunel, I. Turkaslan, P. Torr, P. Kohli, P.K. Mudigonda, A unified view
of piecewise linear neural network verification, in: S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, R. Garnett (Eds.), in: Advances
in Neural Information Processing Systems, vol. 31, Curran Associates, Inc.,
2018, GSCC: 0000413. URL https://proceedings.neurips.cc/paper files/paper/
2018/file/be53d253d6bc3258a8160556dda3e9b2-Paper.pdf.

E. Botoeva, P. Kouvaros, J. Krongvist, A. Lomuscio, R. Misener, Efficient verifi-
cation of ReLU-based neural networks via dependency analysis, in: Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34, (no. 04) 2020,
pp. 3291-3299, http://dx.doi.org/10.1609/aaai.v34i04.5729, GSCC: 0000170
102 citations (Semantic Scholar/DOI) [2024-05-30] 60 citations (Crossref)
[2024-05-30]. URL https://0js.aaai.org/index.php/AAAl/article/view/5729.
M.S. Cheon, An outer-approximation guided optimization approach for con-
strained neural network inverse problems, Math. Program.: Ser. A B 196 (1-2)
(2022) 173-202, http://dx.doi.org/10.1007/s10107-021-01653-y.

N. Ansari, H.P. Seidel, V. Babaei, Mixed integer neural inverse design, ACM
Trans. Graph. 41 (4) (2022) 151:1-151:14, http://dx.doi.org/10.1145/3528223.
3530083, GSCC: 0000268 4 citations (Semantic Scholar/DOI) [2024-05-30] O
citations (Crossref) [2024-05-30]. URL https://dl.acm.org/doi/10.1145/3528223.
3530083.

A. Ignatiev, N. Narodytska, J. Marques-Silva, Abduction-based explanations for
machine learning models, in: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, (no. 01) 2019, pp. 1511-1519, http://dx.doi.org/10.1609/
aaai.v33i01.33011511, GSCC: 0000250 179 citations (Semantic Scholar/DOI)
[2024-05-30] 57 citations (Crossref) [2024-05-30]. URL https://ojs.aaai.org/
index.php/AAAl/article/view/3964.

T. McDonald, C. Tsay, A.M. Schweidtmann, N. Yorke-Smith, Mixed-integer
optimisation of graph neural networks for computer-aided molecular de-
sign, Comput. Chem. Eng. 185 (2024) 108660, http://dx.doi.org/10.1016/
j.compchemeng.2024.108660, URL https://linkinghub.elsevier.com/retrieve/pii/
5S0098135424000784.

S. Zhang, J. Campos, C. Feldmann, D. Walz, F. Sandfort, M. Mathea, C. Tsay,
R. Misener, Optimizing over trained GNNs via symmetry breaking, Adv. Neural
Inf. Process. Syst. 36 (2023) 44898-44924, URL https://proceedings.neurips.
cc/paper _files/paper/2023/hash/8c8cd1b78cdae751265c88efc136e5bd-Abstract-
Conference.html.

X. Gao, B. Xiao, D. Tao, X. Li, A survey of graph edit distance, Pattern Anal.
Appl. 13 (2010) 113-129, Publisher: Springer.

A. Sanfeliu, K.-S. Fu, A distance measure between attributed relational graphs for
pattern recognition, IEEE Trans. Syst. Man Cybern. SMC-13 (3) (1983) 353-362,
http://dx.doi.org/10.1109/TSMC.1983.6313167, URL http://ieeexplore.ieee.org/
document/6313167/.

21

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[571

Neurocomputing 639 (2025) 130214

L.A. Wolsey, Integer Programming, second ed., Wiley, Hoboken, NJ Chichester,
West Sussex, 2021.

E. Kalvelagen, Multiplication of a continuous and a binary variable,
2008, URL http://yetanothermathprogrammingconsultant.blogspot.com/2008/
05/multiplication-of-continuous-and-binary.html,

K. Xu, W. Hu, J. Leskovec, S. Jegelka, How powerful are graph neural net-
works? 2018, http://dx.doi.org/10.48550/ARXIV.1810.00826, URL https://arxiv.
org/abs/1810.00826.

AH. Land, A.G. Doig, An automatic method of solving discrete programming
problems, Econometrica 28 (3) (1960) 497, http://dx.doi.org/10.2307,/1910129,
GSCC: 0000399 2372 citations (Semantic Scholar/DOI) [2024-05-30] 1465
citations (Crossref) [2024-05-30] QID: Q55934470. URL https://www.jstor.org/
stable/1910129?origin=crossref.

Gurobi Optimization, LLC, Gurobi optimizer reference manual, 2023, GSCC:
0000006. URL https://www.gurobi.com.

AX. Debnath, R.L. Lopez De Compadre, G. Debnath, A.J. Shusterman, C. Hansch,
Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro
compounds. Correlation with molecular orbital energies and hydrophobicity, J.
Med. Chem. 34 (2) (1991) 786-797, http://dx.doi.org/10.1021/jm00106a046,
URL https://pubs.acs.org/doi/abs/10.1021/jm00106a046.

K.H. Hsu, B.H. Su, Y.S. Tu, O.A. Lin, Y.J. Tseng, Mutagenicity in a molecule:
Identification of core structural features of mutagenicity using a scaffold analysis,
PLoS One 11 (2) (2016) 0148900, http://dx.doi.org/10.1371/journal.pone.
0148900, URL https://dx.plos.org/10.1371/journal.pone.0148900.

N. Wale, G. Karypis, Comparison of descriptor spaces for chemical compound
retrieval and classification, in: Sixth International Conference on Data Mining,
ICDM’06, 2006, pp. 678-689, http://dx.doi.org/10.1109/ICDM.2006.39.

P. Yanardag, S. Vishwanathan, Deep graph kernels, in: Proceedings of the
21th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD 15, Association for Computing Machinery, New York, NY, USA,
2015, pp. 1365-1374, http://dx.doi.org/10.1145/2783258.2783417, event-place:
Sydney, NSW, Australia.

M. Fey, J.E. Lenssen, Fast graph representation learning with PyTorch geometric,
in: ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.
D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, in: Y. Bengio,
Y. LeCun (Eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015,
URL http://arxiv.org/abs/1412.6980.

J. Huchette, J.P. Vielma, Nonconvex piecewise linear functions: Advanced
formulations and simple modeling tools, Oper. Res. 71 (5) (2023) 1835-1856,
http://dx.doi.org/10.1287 /opre.2019.1973, URL https://pubsonline.informs.org/
doi/10.1287/0opre.2019.1973.

C. Tsay, J. Krongvist, A. Thebelt, R. Misener, Partition-based formulations for
mixed-integer optimization of trained ReLU neural networks, in: A. Beygelzimer,
Y. Dauphin, P. Liang, J.W. Vaughan (Eds.), Advances in Neural Information
Processing Systems, 2021, URL https://openreview.net/forum?id=jhd62iKzRuj.

R. Anderson, J. Huchette, C. Tjandraatmadja, J.P. Vielma, Strong mixed-integer
programming formulations for trained neural networks, in: A. Lodi, V. Na-
garajan (Eds.), Integer Programming and Combinatorial Optimization, Springer
International Publishing, Cham, 2019, pp. 27-42.

Blake Gaines is a Ph.D. student studying under Prof. Jinbo Bi in the School of
Computing at the University of Connecticut, where he also completed a BS in Computer
Science and a BA in Mathematics. His Ph.D. research has been focused on the
geometric properties of neural networks for explainability. He can be contacted at
blake.gaines@uconn.edu

Chunjiang Zhu is an assistant professor in the Department of Computer Science at
the University of North Carolina at Greensboro. He received his Ph.D. in Computer
Science from City University of Hong Kong and completed his postdoc training at
the University of Connecticut. His research interests include Machine Learning and
Theory, Graph Algorithms, and Al for Science and Education. He can be contacted at
chunjiang.zhu@uncg.edu

Jinbo Bi is the Frederick H Leonhardt Professor of Computer Science in the School of
Computing at the University of Connecticut. With over 20 years of experience in Al
and biomedical research, Prof. Bi has made significant contributions to the fields of
machine learning, artificial intelligence, and their applications in healthcare and life
science. She can be contacted at jinbo.bi@uconn.edu

